
Letters to the Editor 

Comments on "A New Definit ion of the 

Cell Diffusion Coefficient" 

In two recent papers, Gelbard1 and Kohler2 have dis-
cussed the definition of the cell diffusion coefficient from 
different viewpoints, with the f irst author criticizing and 
the second author effectively rejecting Benoist's long-
known formula3 for regular lattices. 

The problem was, however, thoroughly examined by 
Bonalumi in an even earlier paper,4 where all the apparent 
contradictions between d i f f e r e n t "versions'' had been 
cleared, and, in addition, a consistent formulation for 
nonuniform lattices had been proposed. 

Since Ref. 4 does not seem to be widely noticed, it is the 
purpose of this Letter to bring to attention at least one 
basic point raised in that reference, i.e., the necessity of a 
conceptually sharp distinction between the groupwise leak-
age term and the energy-integrated order-B2 term in the 
"ce l l balance." The following derivation is basically the 
same as in a hard to find report by Berna,5 and, for the 
sake of simplicity, is offered in a multivelocity formalism 
for a buckled source problem. 

Define: the vector flux i//, the cross-section-l ike opera-
tor 2 such that 

t f = Z(E)f(E,to) 

- f(4w) dQ' r Zs(E' - E,Q' - to)f(E',W)dE' , (1) 

the (isotropic) source 

expUB - r ) , 

the Boltzmann operator H such that 
ff/ = n-v/+z/. (2) 

The associated transport equation reads 

expUB-r) ; (3) 

if x is an axis directed as B, the ansatz ty = f exp(*B*r) 
gives 

H f + i Q - B f = ^ = > H f + iBn x f = ^ . (4) 

If the origin of * is in the ceil center r 0 , one can expand 
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cleates, Saclay (1964). 

4R. A. BONALUMI, Energ. Nucl., 21, 231 (1974). ^ 
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expUB-r) = exp(iB*r0) (l + iBx - + . . .j (5) 

and other expansions are, with obvious symbols and mutual 
relationships, 

00 
/ = So (-iB)nfn = / o - iBU - B2f2 + . . . (6) 

0 = J n) \l/dQ = exp ( iB - r ) [F0 - iBFi - B2F2 + . . . ] (7) 

J = f(4n) f t y dto = e x p ( i B - r ) g , (8) 

g=jo - i B j i + B2j2 + . . . . (9) 
Such expansions applied to Eq. (4) give: 

q 

Hf 0 = infinite lattice problem (10) 

= ft*/;, all* ^ 0 (11) 

and, upon integration over d£l: 

div j0 + 2 Fo = q (10r) 

div + t Fi+i = jix, all f ^ 0 . (11') 
Note the following important equations: 

div J = exp(iB - r ) (div g + iBgx) (12) 

jo = 0 on the cell boundary surface (13) 

/ div ji dV = 0, all t ^ 0 (for lattice periodicity) . (14) 
(cell) 

The following basic identity is easily established 

f x2 I f J (xjox + div jo) dV = — J div (x2j0) dV = 0 (15) 
(cell) (cell) 

because of Green's theorem and Eq. (13); with the conven-
tion that all volume integrals cover the unit cell, it i s 
possible to prove, because of Eqs. (10'), (11'), and (15), the 
following equation: 

/ Z (xF, -^F0
)JdV= j | x ( j 0 x - div ji) - ^ (<7 - div jojjdV 

= - f(xdivJl+Zf)dV . (16) 

We are at last in a position to write down the individual 
terms contributing to the actual cell balance; "net remov-
al," "leakage," and "source" terms [arbitrarily premul-
tiplied by exp(-iB*r<>)] are: 

A = exp(-iB-r0) f i 0 dV (17) 

£ = expHB-ro) f div J dV (18) 

S = exp(-*B-r0) / qexp(iB-r)dV . (19) 
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If the cell, q> and S are symmetric about r0, use of 
antisymmetry of xF0, Fi, and of Eq. (16) into Eq. (17), use 
of Eq. (15) and repeated application of Eq. (14) into Eq. (18) 
and antisymmetry of xq in Eq. (19) lead to the following: 

A= j ZFodV - B2 J (tF2 + * div ji + dV + 0 (B" 

B* f 0'i* + x div j j dV+0 (B4) 

2 

5= / qdV-B2 f ^ qdV+0(B4) . 

(170 

(180 

(190 

One can check that because of Eqs. (100, (110, and (14), the 
cell balance is respected; through order B2, all coefficients 
of -t + A - S do vanish. 

It is also convenient to calculate 

G = exp(-iB-r0) f <t>dV 

= f FodV + B2 f(-F2 +xFx 0(£4) , (20) 

and, through order B2, with self-explanatory symbols, to 
let 

A=A0+A2B2 (21) 

= B2 (22) 

S = S0 + S2B2 (23) 

G = G0+ G2B2 . (24) 

(We note that A0 - S0 = A2 + - S2 = 0.) 

Now the homogenized removal cross section £ and 
diffusion coefficient D should be such that, whichever 
definition one takes for the "homogenized flux": 

X + DB 

so that if one lets 

2 = - = = > s s = A(Z + db2) (25) 

S = So + S2 B (26) 
D=DO + D2B2 (27) 

and equates order-52 terms in Eq. (25), zero order gives 
So = AQ as obvious, one gets 

S2 - A2 
Do = L0 • (28) 

Equation (28) says that D0 is uniquely defined provided 
So is defined. In a uniform lattice, it is irrelevant which 
normalization is chosen for S0; if we take the usual one, 
advocated by Gelbard although inapplicable in nonuniform 
lattices,4 i.e., 

= - (29) 

then becomes 
Sz - A2 -t2 / ( f a + x div ji) dV 

which proves Benoist right, as expected from Eq. (180, but 
also proves Kohler wrong. The reason is that Kohler's D 
takes into account nonleakage B2 terms related to A2 and 
S2, and arbitrarily introduced by Kohler's definitions of 
homogenized source and absorption rate, which do not 
reproduce 5 and A. 

The situation is only slightly different as far as the 
definition of a diffusion area L2 is concerned; no matter 
what normalization is used for So, the purpose of such a 
removal cross section is to reproduce A. If the homog-
enized flux 0hom is calculated as 

0 hom = 
Sb/F 

Sod +B2L2) 
exp(^B-r) (31) 

one must impose 

exp(-z£-r0) J S0 0homdF = A 

so that / / 2\ \ 
So (l - B>(* \ ) 

where 

<04/• dV 

Equating order-52 terms yields 

/ (%F2+X divjJdV 
J 2 \S0 V) dV 

j ZFodV 

But Eq. (11') for i = 1 gives, as correctly stated by Kohler, 

/ tFtdV= J jixdV 

so that 
Do 

I - t i k 4 > " ; 
i f ? 

uniform So 
Therefore, corrections to D0/^o do arise in connection 

with nonuniformity of the source, but basically the Benoist 
equation is confirmed. One thing, instead, is worth recall-
ing, which was first pointed out by Benoist3 himself: the 
term containing x div ji (Benoist's "absorption correc-
tion") is such that, in a few-group criticality calculation, it 
cancels out when all the groupwise L2' s are summed up to 
yield a migration area. This is particularly well displayed 
if we transform a part of the absorption correction 
following Carter.6 The absorption correction is: 

/ xdivj1dV= f x(j0x - tF,)dV 

and because of Eqs. (15) and (100: 
2 

/ x div ji dV = / - y (±F0 - q)dv - / xZFxdV , 

displaying that what is removed for one group takes the 
role of a source in another (particularly so in a criticality 
calculation, where q can be included altogether in SF0 upon 
properly redefining S); one may conclude that, as far as 
the overall neutron leakage is concerned, Benoist's ab-
sorption correction is inactive, but this is not true at the 
level of any single energy group, where current continuity 
requires use of the complete "Benoist" D. 

Of necessity, the foregoing discussion ignores two other, 
perhaps more fundamental questions: 

1. How should S0 be normalized? 

2. How meaningful is the definition of uniform-lattice 
constants such as S0, D0 in a nonuniform lattice, and 
how can one remedy the situation? 

6C. CARTER, unpublished paper as quoted by D. C. Leslie, "The Calcu-
lation of Leakage and of Flux Distributions in Systems with Superimposed 
Buckling," AEEW-M.292, U.K. Atomic Energy Authority, Winfrith (1964). 
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In the writer's opinion, the answer is given in Ref. 4, 
Sees. 3 and 4, regardless of whether the interstitial 
("moderator") region is dealt with by diffusion or trans-
port theory. 

Riccardo A. Bonalumi 

Centro Informazioni Studi ed Esperienze 
Divisione Calcolo e Analisi Reattori 
C. P. 3986 
1-20100 Milano, Italy 
September 10, 1975 

Comments on "Systems with Stochastic Parameters" 

In a recent paper, Karmeshu and Bansal1 have consid-
ered the response of the point model reactor kinetics 
equations to a random parametric reactivity excitation. 
They make the statement that their results differ from 
those of Williams2 because he assumed that no correlation 
exists between reactivity and neutron density. It is the 
purpose of this Letter to point out the reason for the 
neglect of this correlation in Williams' paper and to 
emphasize the importance of this particular problem. 

The reasoning outlined here follows closely that of Gray 
and Caughey.3 We consider the point model reactor 
kinetics equations with one group of delayed neutrons in the 
form 

^ = j [ p ( t ) - m t ) + *c(t) + s(t) a ) 

= - * c w + f mo (2) 

p(t) = Po + A (t) and S(t) = S0 + J(t) . 

Now A(t) and J(t) can be considered either as Gaussian, 
physical white noise sources or, alternatively, as deriva-
tives of a Wiener process such that 

A (t)=Tf and A t ) ^ (3) 

Ai = lim -77-St^o ot (4) 

KARMESHU and N. K. BANSAL, Nucl Sci. Eng., 58, 321 (1975). 
2M. M. R. WILLIAMS,/. Nucl. Energy, 23, 633 (1969). 
3A. H. GRAY, Jr. and T. K. CAUGHEY, /. Math. Phys.,XLIV, 288 

(1965). 

then for Wiener impulses we obtain 

A i = j (p0 - S> , (5) 

whereas for the Gaussian continuous process we obtain 

AI = J(PO - P + Y ) + XC + S0 , (6) 

(6W) = 0 (7) 

where 

and 

((6W)2) = 2a2
n6t . (8) 

When these and the other coefficients are inserted into the 
Fokker-Planck equation, it can be readily shown4 that the 
corresponding first moment equations are: 

Wiener Process 

Gaussian Process 

d(N) 
dt 

(9) 

(10) 

where 6W and 6V are jump processes . Equations (1) and 
(2) with the excitation given by Eq. (3) can be interpreted in 
a discrete sense by assuming that, at the start of each time 
interval, 6t, the system receives a random impulse that 
sends it from state Pi to P2 instantaneously due to the 
action of the term (6WN + 6V)/l. From this stage the 
system moves according to the term [(p0 - fi)N/l + A.C + 
So]6£ until the end of the time interval when it is a state P3 . 
The process is then repeated indefinitely, with impulses 
followed by steady motion in successive time intervals 61. 
This type of behavior is characteristic of Brownian motion, 
shot noise, or neutron emission from fission. In this case, 
N and 6W are uncorrected. 

The other situation arises when 6W and 6V are a con-
tinuous process such that bW/bt is a mathematical ap-
proximation for a Gaussian process with a very short 
correlation time. In this case N and 6W are correlated. 

Thus, when we formulate the Fokker-Planck equation 
and are required to evaluate the limit 

Williams2 obtained Eq. (9), and Karmeshu and Bansal 
have obtained the solution of Eq. (10) where D = Po^ii and 
not D = o\x as suggested. It might also be mentioned that 
the solution of Eq. (10) was obtained by Williams5 by the 
renormalization technique [see Eq. (8.10) of that paper]. 

Now we must discuss which equation is the correct one. 
There is no doubt that, if we wish A (t) to simulate the 
effects of random neutron injection from fission, Eq. (9) 
must be correct. This follows from the fact that Eq. (9) is 
the exact moment equation of the zero power probability 
balance equation. On the other hand, when the reactivity 
perturbation is due to random vibration or some other 
mechanical cause, it seems physically more realistic to 
adopt the Gaussian assumption and employ Eq. (10). From 
the practical point of view it does seem that an experi-
mental investigation of these two types of stochastic per-
turbation would be useful. Initial indications from the work 
of Akcasu6 on boiling water reactors suggest that its effect 
is not insignificant. 

Finally, it must be pointed out that the technique de-
scribed by Karmeshu and Bansal for calculating the first 
moments has no material advantage, other than concise-
ness over the iteration technique discussed by Bourret7'8 in 
his earlier works. In addition, all the results quoted by 
Karmeshu and Bansal for the f irst moments can be obtained 
directly from Sec. 8 of the paper by Williams.5 

M. M. R. Williams 

Queen Mary College 
Nuclear Engineering Department 
London E14NS 
England 

November 13, 1975 
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