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which is the usual result for constant heat capacity (7 = 0), 
and to 

T„ = i8kp/a for <7 = 0 (14) 

so that a 25% reduction in final fuel element temperature 
is possible for this case. The total energy release may be 
computed from (12) by noting that 

^00 = CgTx + (yTJ/2). (15) 

The peak power occurs at 0 = 1, as is clear from (9), so that 
(11) yields 

Pmax — Po ~ 
1 + 3a- CoWp)2 

60- al 
(16) 

p(F) •t max 
C(8kp)* Co(Sfcp)2 1 + a 

2 al 2 al 
(17) 

C = Co + T 

From (16) and (17) 

P max Po 1 + 3<r 
p ( i r ) _ P n 3(1 + <r) -L max r 0 

so that (neglecting P0) 

as expected and 

/jPiax = 1 for <7 = 00 

x / P m a x = 4 f o r <7 = 0, 

(18) 

(19) 

(20) 

Green ' s Function for a Ba re S l a b with 
Anisotropic Scat ter ing* 

Under the assumption that the scattering function can 
be expanded into a finite series of legendre polynomials, 
the one-velocity Boltzmann equation in the case of plane 
symmetry has the form 

fi) 
dx 

•+*(x,fi) bkPM f P, 
^ 0 J-1 

mO dn' (1) 

I t is of interest to discuss the physical interpretation of the 
various limiting cases here also but, for brevity, we shall 
compare (16) with the constant heat capacity result 

where x is in terms of optical thickness (1), c is the mean 
number of secondarys which emanate from a neutron-
nucleus interaction, and the bk are the coefficients of the 
Legendre polynomial expansion. The general solution to 
this equation has been found by A. Jacobs (2) and J. Mika 
(3) in the form 

fi) = S a+y <£(+£/, v)e~xlLi 
i=i 

where we have chosen an "average" heat capacity over the 
course of the pulse 

r"i + j A «<£(*>, 

(2) 

fx)e~xlv dv 

(21) 

i.e., a drop of 67% is possible with respect to the value ob-
tained by using an average heat capacity. Needless to say, 
values for specific cases should be computed using the full 
formulas (12) and (16), and due regard must be paid to the 
validity of the linear approximation (1). 

We may finally remark that substitution of (11) into (10) 
and a decomposition into partial fractions enables one to 
carry out the final integration which gives the temperature 
as a function of t ime; since the dependence is implicit, i.e., 
f(T) = t, where / is a transcendental function, we shall 
forego a detailed discussion (3). However, it may be noted 
that a few percent broadening of the pulse width, as com-
pared to the constant heat capacity case, is a general char-
acteristic of the solution. 
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+ E a^-Liy»)e*lLi 
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where the <£'s are known functions and the coefficients 
a±j and A{v) are determined from boundary conditions. 
The eigenfunctions have useful orthogonality properties 
and have been shown complete in the space of prescribed 
boundary variations, which satisfy Eq. (1). 

The Green's function problem for a bare slab of thick-
ness T with a source plane at xQ emitting neutrons at p. = /*0 

can be defined as follows 

p) = 0 p < 0 (3) 

iT(0, / i ) = 0 fi > 0 (4) 

fjL[xp+(x0 , fl) — t~(x0 , n)] = 8(fi - fio) (5) 

The quantities \f/+ and refer to the neutron distributions 
to the right and left of the source plane respectively. 

Due to the nature of the boundary conditions, in the cal-
culations tha t follow there will occur coefficients which are 
zero over half their respective ranges in v. I t will therefore 
be convenient to decompose the continuous coefficients in 
the eigenf unction expansion (2), into two half-range coeffi-
cients (4). Put t ing the discrete summations in a more com-
pact notation, Eq. (2) may be writ ten as 

+ f 1 

J [AHr)hto + BH-v)h(-p)eb±'v]<f>(p, fi)e'xlv dv 
(6) 

where ^(^)is the Heaviside step function and where 

6+ = T- b~ = :r0 

Upon application of the orthogonality properties of the 
eigenfunctions Eq. (5) yields 

A + (v) - A~(v) = 4>{v, fi0)exolv/M(v) v > 0 (7a) 

B+(v)e<xo-r>/" - B~(v) = cf>(-v, fio)/M(-v) 

v > 0 (7b) 

a±j - a±. 
(f>(±Lj, po) ±x ,T. 

M+ 
(7c) 

* This work was supported by a grant from the National 
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The normalizations Mj± , M(v) and all fur ther quantities 
not explicitly defined in this note are to be taken as defined 
by Mika (3). 

Using the property 0 , ii) = <j>(—v, — n) and applying 
Eq. (3) yields the singular integral equation 

f B+(v)ct>(p, n) dv = JU>0 (8) 
Jo 

where the dominant part is given by 

- [ A+(v)cj>(-v, n)e~Tlv dv 
Jo 

(9) 

Jo 

x~W(v) dv 
(11) 

lPQ(v) - (iirCv/2)N(v)] (v - /*) 

N n 

= + - S Z Z bnPn C»)Cnkflk-mgm (12) 
* n = 0 k = 0 m= 0 

The Cnk are some numbers and 

(]m = I B+{v)vm dv 
Jo 

(13) 

D = 

(1 — A0o) — Aoi 
-Aio(l - An) 

—AJVO 

—AOJVT 

(1 — AJVJV) 

and 

Anm = f M ÂmW dfX = f ^ Z Z bn PCnk V?™ ^ 
Jo Jo 1 n= , fc=m 

The determinant Dm is obtained by replacing the elements 
in the mth column Ao™ , Aiw • • • ANm with the coefficients 
Xo , Xi , • • • * Nowhere 

An = f flnrt'(fl) dfx 
Jo 

Define the operator P with the following relation 

N A (u) N r1 

- -ivW - Z E i.-\)i+mMim I v'r^iv) dv 
TO= o V j= 0 Jq 

The quanti ty M j m is the minor of the element X,- obtained 
by expanding Dm in a Laplace development along the mth 
column. It follows that 

Oi) = - I V ' f o ) 

Using Eq. (7a) this may be more explicitly written as 

= Z a l i e ^ ' h - p ^ L j ^ ) 

A solution to this equation has been obtained in the form 
CM) 

B + b) = YVW (10) 

where the operator r is defined by the relation 

. Ptt(n) PQ(p) - {iircn/2)N{ji) c , 
- 5 W * W S & Z ^ ) 2 

+ I M(v) P 4>{-v,ndv) (14) 

+ [ A-{V)~t'vV4>{-V,H) dv 
Jo 

Upon applying boundary condition (4) and following the 
same procedure used for B+ (n) it follows that 

M 

A-(VL) = Z A-±J-P<J>(±(LJ ,.U) 
±Lj 

where X(v), Ptt(v), S ( / J L ) , and N (v) are all known functions 
and where -I 1 </>(—v, 

P<f>(-pfn) dv M(-v) 

+ f B+(p)e-TIVP<t>(-v,n) dv 
Jo 

(15) 

Equation (10) is an inhomogeneous Fredholm integral 
equation with a degenerate kernel and may be readily 
reduced to a system of algebraic equations (6). I t will be 
useful to rearrange the terms in the sum such tha t 

N n k N N n 
I E E - E E E 
n = 0 fc = 0 to = 0 to = 0 n = m k = m 

The solution of the Fredholm equation yields 

9m = T)m/D 

where 

I t is useful to note that the functions P<£(— v, p) and 
P<t>{±Lj , n) are uniquely determined by the physical 
properties of the medium. The range of ju, (0, 1), is the only 
boundary condition inherent in these functions. They may 
consequently be used with arbitrary slab thicknesses and 
source positions. They may also be of use in other half-
range problems. 

Substitution of Eq. (15) into Eq. (14) will yield a Fred-
holm integral equation for the coefficient B+(fx) which 
may be reduced by standard techniques. This solution in 
conjunction with Eqs. (15), (7a), and (7b) yields expres-
sions for all the continuous coefficients in terms of the dis-
crete ones. The problem is now reduced to finding sufficient 
conditions for the determination of the discrete coefficients. 
These conditions are provided by the operator r used to 
reduce Eq. (8) to a Fredholm integral equation. When the 
index of the integral equation is negative some added 
conditions are required if r is to have the proper behavior 
at infinity (5). The index of Eq. (8) is — M making it neces-
sary to impose the conditions (5) 

f Jo 

v>X-(vW(v) dv 
Pttiv) - (iirCv/2)N{v) 

= 0 i = 0,1, . . . , ( M - 1 ) 

There will be an additional set of M equations obtained 
in the derivation of Eq. (15). Substitution of the solutions 
obtained for the continuous coefficients into these relations 
yields 2M algebraic equations for the 4M unknown a,-'s. 
The additional 2M equations supplied by Eq. (7c) allow a 
complete determination of the discrete coefficients. 

The Green's function problem for a bare slab has been in 
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principle solved. The integrations involved are compli-
cated and it is doubtful that they can be expressed in closed 
form. It is probable tha t the coefficients and the functions 
P<£ must be calculated numerically and then tabulated. 
Fortunately in many important cases the spherical har-
monic expansion of the scattering distribution converges 
rapidly. For many problems of practical interest there are 
only one or two terms in the discrete set of functions, 
thereby reducing considerably the amount of algebra in-
volved. In solving problems for a distributed source $Gu0), 
caution must be exercised in choosing the order of integra-
tion where doubly singular integrals are involved. It has 
been shown tha t in some cases, integrations involving a 
Green's function may not be in the order tha t is usually 
expected (2). The solution to the albedo problem or the 
shielding problem for a slab with an incident neutron beam 
is obtained by placing the source plane at the origin. 
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