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the neutron density and reactivity respectively 
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For many cases of practical importance, the heat ca-
pacity, C, of the reactor fuel elements may be assumed to 
vary linearly with temperature, T: 

Since the terms in the brackets describe the dynamic 
behavior of the system, only they need be examined. Plots 
of the attenuation frequency and phase-shift frequency 
curves of these transfer functions are shown in Figs. 6-9, 
when the open-loop gain is equal to KTC KR = 54.8 db and 
44.8 db. 

The above comparison between the distributed and 
lumped transfer functions was done on the basis of X = oo . 
To show the error tha t arises due to this assumption, the 
open-loop transfer functions for three models are plotted in 
Fig. 10 for the case w = 2.4 meters/sec. If we compare these 
curves with those in Fig. 4 we see that the assumption 
X = oo makes the open-loop gain coefficient smaller than if 
X ^ , when in both cases the closed loop gain is equal to 
M = 2.28 db. 

The results that have been presented above give a view 
of the significance of the simplifying assumptions made in 
order to simulate the effect of the distributed parameters. 
As shown by the numerical calculations, these assumptions 
cause some differences in dynamic performance of a reactor 
temperature feedback loop. These differences are dependent 
on the parameters such as coolant velocity, effective time 
between succeeding generations of neutrons, and open loop 
gain (KTC KR). For KTC KR ^ 44.8, when the neutron 
density is a controlled variable, one section may be adequate 
to obtain good accuracy (Fig. 8). For KTC KR > 54.8, or 
for the case when the coolant temperature is the controlled 
variable, use of six reactor sections may not be satisfactory 
(see Figs. 6-9). 

The final conclusion is tha t the distributed model of the 
thermal processes in the reactor core allows the open loop 
gain coefficient to be greater in comparison with the lumped 
model at the same conditions of damping of the closed loop. 
By this we mean, the lumped approximation being more 
instable predicts the limiting value of Mp at a lower value 
of the gain coefficient than does the distributed parameter 
system. 
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C = Co + yT (1) 

where CQ and y are constants. The so-called Fuchs-
Nordheim model (1) yields for the equations of motion of 
the reactor 

dP 8kv 

dt 

dt 

(2) 

(3) 

where P(t) is the reactor power at time t, 8kp is the prompt 
reactivity insert, a is the magnitude of the prompt reac-
tivity temperature coefficient (assumed constant), and I is 
the prompt neutron lifetime. In (2) and (3) delayed neutron 
and heat transfer effects are neglected; for narrow pulses, 
such as are obtained in the TRIGA reactor, these are excel-
lent approximations. The neglect of space and neutron 
energy dependent effects is also a good approximation and 
this question will be examined elsewhere (2). 

With the variation (1) for the heat capacity of the fuel 
elements the equations of motion may be integrated ana-
lytically with the result that important quantities, such as 
total fuel element temperature rise, peak power, and total 
energy release, are expressible concisely as functions of a 
single dimensionless parameter, 

(4) 
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The Fuchs-Nordheim Model with Variable 
Heat Capacity 

In this letter we shall describe how the values of certain 
quantities of physical interest, such as final fuel element 
temperature, peak power, etc., may be computed for a 
pulsed reactor with variable heat capacity. 

This may be seen most easily by introducing the dimension-
less variables 

X = t/r (5) 

Q = [al/C0(8kp)2]P (6) 

0 = (a/8kp) T (7) 

where the asymptotic reactor relaxation time, 

r = l/8kp . (8) 

Then Eqs. (2) and (3) become 

dQ/dx = (1 - 6)Q (9) 

dd/dx = aQ/(e + a). (10) 

Division of (9) by (10) and integration yields for the relation 
between power and temperature 

Q ~ Qo = 0 + 
(1 - a)92 03 

3cr 2<t 
(11) 

where Q0 is the initial value of the power, in the above de-
fined units. The value of the final temperature, Tw , may be 
obtained to an excellent approximation by setting Q = Q0 
in (11), since the peak power is generally so much greater 
than Qo • The useful result is 

8kv 
^ = — [-f(«r - 1) + fV(«r - l)2 + V 4 (12) a 

This reduces to 

T^ = 28kp/a for <r (13) 
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which is the usual result for constant heat capacity (7 = 0), 
and to 

T„ = i8kp/a for <7 = 0 (14) 

so that a 25% reduction in final fuel element temperature 
is possible for this case. The total energy release may be 
computed from (12) by noting that 

^00 = CgTx + (yTJ/2). (15) 

The peak power occurs at 0 = 1, as is clear from (9), so that 
(11) yields 

Pmax — Po ~ 
1 + 3a- CoWp)2 

60- al 
(16) 

p(F) •t max 
C(8kp)* Co(Sfcp)2 1 + a 

2 al 2 al 
(17) 

C = Co + T 

From (16) and (17) 

P max Po 1 + 3<r 
p ( i r ) _ P n 3(1 + <r) -L max r 0 

so that (neglecting P0) 

as expected and 

/jPiax = 1 for <7 = 00 

x / P m a x = 4 f o r <7 = 0, 

(18) 

(19) 

(20) 

Green ' s Function for a Ba re S l a b with 
Anisotropic Scat ter ing* 

Under the assumption that the scattering function can 
be expanded into a finite series of legendre polynomials, 
the one-velocity Boltzmann equation in the case of plane 
symmetry has the form 

fi) 
dx 

•+*(x,fi) bkPM f P, 
^ 0 J-1 

mO dn' (1) 

I t is of interest to discuss the physical interpretation of the 
various limiting cases here also but, for brevity, we shall 
compare (16) with the constant heat capacity result 

where x is in terms of optical thickness (1), c is the mean 
number of secondarys which emanate from a neutron-
nucleus interaction, and the bk are the coefficients of the 
Legendre polynomial expansion. The general solution to 
this equation has been found by A. Jacobs (2) and J. Mika 
(3) in the form 

fi) = S a+y <£(+£/, v)e~xlLi 
i=i 

where we have chosen an "average" heat capacity over the 
course of the pulse 

r"i + j A «<£(*>, 

(2) 

fx)e~xlv dv 

(21) 

i.e., a drop of 67% is possible with respect to the value ob-
tained by using an average heat capacity. Needless to say, 
values for specific cases should be computed using the full 
formulas (12) and (16), and due regard must be paid to the 
validity of the linear approximation (1). 

We may finally remark that substitution of (11) into (10) 
and a decomposition into partial fractions enables one to 
carry out the final integration which gives the temperature 
as a function of t ime; since the dependence is implicit, i.e., 
f(T) = t, where / is a transcendental function, we shall 
forego a detailed discussion (3). However, it may be noted 
that a few percent broadening of the pulse width, as com-
pared to the constant heat capacity case, is a general char-
acteristic of the solution. 
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+ E a^-Liy»)e*lLi 
3-1 

where the <£'s are known functions and the coefficients 
a±j and A{v) are determined from boundary conditions. 
The eigenfunctions have useful orthogonality properties 
and have been shown complete in the space of prescribed 
boundary variations, which satisfy Eq. (1). 

The Green's function problem for a bare slab of thick-
ness T with a source plane at xQ emitting neutrons at p. = /*0 

can be defined as follows 

p) = 0 p < 0 (3) 

iT(0, / i ) = 0 fi > 0 (4) 

fjL[xp+(x0 , fl) — t~(x0 , n)] = 8(fi - fio) (5) 

The quantities \f/+ and refer to the neutron distributions 
to the right and left of the source plane respectively. 

Due to the nature of the boundary conditions, in the cal-
culations tha t follow there will occur coefficients which are 
zero over half their respective ranges in v. I t will therefore 
be convenient to decompose the continuous coefficients in 
the eigenf unction expansion (2), into two half-range coeffi-
cients (4). Put t ing the discrete summations in a more com-
pact notation, Eq. (2) may be writ ten as 

+ f 1 

J [AHr)hto + BH-v)h(-p)eb±'v]<f>(p, fi)e'xlv dv 
(6) 

where ^(^)is the Heaviside step function and where 

6+ = T- b~ = :r0 

Upon application of the orthogonality properties of the 
eigenfunctions Eq. (5) yields 

A + (v) - A~(v) = 4>{v, fi0)exolv/M(v) v > 0 (7a) 

B+(v)e<xo-r>/" - B~(v) = cf>(-v, fio)/M(-v) 

v > 0 (7b) 

a±j - a±. 
(f>(±Lj, po) ±x ,T. 

M+ 
(7c) 
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