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Letters to the Editors 
A Comparison of the Transfer Function of the 
Internal Reactor Loop for the Cases of both 

Distributed and Lumped Parameters 

The thermal processes in the reactor core are described 
by partial differential equations; in stability considerations, 
some simplifications must be introduced to permit simula-
tion of these equations on an analogue computer. This is 
usually done by replacing the distributed parameters by 
lumped ones. 

In a previous communication (1) the time response of 
the coolant temperature has been considered. The influence 
of the same simplifying assumptions as in (1), but on the 
dynamic behavior of the internal reactor loop (Fig. 1) is the 
scope of this letter. 

The presented analysis is performed for the single fuel 
channel with the following assumptions: 

1. The reactor is nearly critical and the reactivity change 
as a disturbing value, is less than one "dollar ." 

2. The coolant and the moderator are incompressible 
media. 

3. The fuel element without cladding is of the rod type, 
with no conduction in the longitudinal direction, and with 
a radially symmetric temperature distribution. The heat 
source distribution along this fuel element is represented by 
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4. The neutron density n and coolant temperature T 
are considered as deviations from the steady state. 

5. The inlet coolant temperature is constant. 
6. The zero power kinetic transfer function KRGR(S) 

is derived from the normal set of neutron kinetics equations. 
The frequency response of the coolant temperature is 

calculated for the following three models: (1) The pa-
rameters of the fuel-coolant channel are treated as lumped 
ones and the thermal conductivity of the fuel element is 
assumed to be X = oo. (2) The parameters are treated as 
distributed and X = <» . (3) The parameters are distributed 
but X ̂  oo. The solutions of the equations which describe 
the transient heat transfer of the coolant channel are pre-
sented in ref. 1. The power coolant temperature transfer 
functions obtained from these solutions are for the above-
mentioned three models respectively 
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where 
a = outer fuel element radius 
c,a = coolant and fuel specific heat respectively 
F,Fi = area of channel and fuel cross section respec-

tively 
k = number of sections 
k' = fuel element to coolant heat transfer coefficient 
L = fuel element length 
Lx = length of fuel element section 
u = perimeter of fuel element 
Ff = volume of fuel element 
w = coolant velocity 
z = space variable along the fuel element axis 
z% = coordinates which define the division points of 

the fuel channel 
a = heat transfer coefficient 
y,yt = coolant and fuel specific gravity respectively 
The numerical examples are used to compare three models 

of the internal reactor loop. The main data of these examples 
are: fuel element of the rod type of 0.013 meter diameter; 
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FIG. 1. Reactor internal feedback loop 
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FIG. 3. Phase angle characteristics of the power-coolant 
temperature transfer functions 

F = 0.88 X 10~4 meter; L = 1.5 meters. The power-coolant 
transfer functions are considered for two values of the 
coolant velocity, tha t is, w = 2.4 meters/sec and 10 meters/ 
sec, and the results as attenuation and phase characteristics 
are presented in Figs. 2 and 3 respectively. After adding the 
attenuation and phase characteristics of the power-coolant 
temperature and zero power kinetics transfer functions, the 
open-loop frequency responses of the examples considered 
are obtained, and shown in Figs. 4 and 5 respectively. This 
is done when the zero power kinetics transfer function is 
considered for two values of Z* = 5 X 10~5 sec and 5 X 10~4 

sec. 
In order to compare the dynamic behavior of the loop 

considered when the coolant system is described by the 
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FIG. 2. Attenuation characteristics of the power-coolant 
temperature transfer functions 
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FIG. 4. Open-loop transfer functions of reactor internal 
loop (w = 2.4 meters/sec) 
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FIG. 5. Open loop transfer functions of reactor internal 
loop (w = 10 meters/sec) 



458 LETTERS TO THE EDITORS 

distributed and lumped parameters, we adjusted the open 
loop gain KTC KR so that the maximum gain MP of the 
closed loop for the distributed representation is equal to 
MP = 2.28 db. Then it is evident from Figs. 4 and 5 that the 
gain of the closed loop of the one- and six-section models 
have different values depending upon the parameters w and 
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FIG. 6. Attenuation characteristics of the closed-loop 
t r a n s f e r f u n c t i o n [KTCKRGGR/( 1 + KTCKRGGR)] 
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FIG. 7. Phase angle characteristics of the closed-loop 
t r a n s f e r f u n c t i o n [KTCKRGGR/(1 + KTCKRGGR)] 
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FIG. 8. Attenuation characteristics of the closed-loop 
transfer function [(1 /G)KTCKRGGR/(1 + KTCKRGGR)] 
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FIG. 9. Phase angle characteristics of the closed-loop 
transfer function [{\/G)KTCKRGGR/(1 + KTCKRGGR)] 
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FIG. 10. Open-loop transfer functions of reactor internal 
feedback loop 

I*, and the differences in the resonant frequency increase as 
the number of sections decrease. 

To show more clearly these differences, two examples of 
the closed loop transfer functions are considered when the 
zero power and power-coolant temperature transfer func-
tions are in parallel and in series. In the first case the 
relation between coolant temperature and reactivity is 
taken as: 
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the neutron density and reactivity respectively 

1 _ T\_ KTCKRGGR \ 

~ KTC 1 + KTCKR GGR) 
(10) 

For many cases of practical importance, the heat ca-
pacity, C, of the reactor fuel elements may be assumed to 
vary linearly with temperature, T: 

Since the terms in the brackets describe the dynamic 
behavior of the system, only they need be examined. Plots 
of the attenuation frequency and phase-shift frequency 
curves of these transfer functions are shown in Figs. 6-9, 
when the open-loop gain is equal to KTC KR = 54.8 db and 
44.8 db. 

The above comparison between the distributed and 
lumped transfer functions was done on the basis of X = oo . 
To show the error tha t arises due to this assumption, the 
open-loop transfer functions for three models are plotted in 
Fig. 10 for the case w = 2.4 meters/sec. If we compare these 
curves with those in Fig. 4 we see that the assumption 
X = oo makes the open-loop gain coefficient smaller than if 
X ^ , when in both cases the closed loop gain is equal to 
M = 2.28 db. 

The results that have been presented above give a view 
of the significance of the simplifying assumptions made in 
order to simulate the effect of the distributed parameters. 
As shown by the numerical calculations, these assumptions 
cause some differences in dynamic performance of a reactor 
temperature feedback loop. These differences are dependent 
on the parameters such as coolant velocity, effective time 
between succeeding generations of neutrons, and open loop 
gain (KTC KR). For KTC KR ^ 44.8, when the neutron 
density is a controlled variable, one section may be adequate 
to obtain good accuracy (Fig. 8). For KTC KR > 54.8, or 
for the case when the coolant temperature is the controlled 
variable, use of six reactor sections may not be satisfactory 
(see Figs. 6-9). 

The final conclusion is tha t the distributed model of the 
thermal processes in the reactor core allows the open loop 
gain coefficient to be greater in comparison with the lumped 
model at the same conditions of damping of the closed loop. 
By this we mean, the lumped approximation being more 
instable predicts the limiting value of Mp at a lower value 
of the gain coefficient than does the distributed parameter 
system. 
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C = Co + yT (1) 

where CQ and y are constants. The so-called Fuchs-
Nordheim model (1) yields for the equations of motion of 
the reactor 

dP 8kv 

dt 

dt 

(2) 

(3) 

where P(t) is the reactor power at time t, 8kp is the prompt 
reactivity insert, a is the magnitude of the prompt reac-
tivity temperature coefficient (assumed constant), and I is 
the prompt neutron lifetime. In (2) and (3) delayed neutron 
and heat transfer effects are neglected; for narrow pulses, 
such as are obtained in the TRIGA reactor, these are excel-
lent approximations. The neglect of space and neutron 
energy dependent effects is also a good approximation and 
this question will be examined elsewhere (2). 

With the variation (1) for the heat capacity of the fuel 
elements the equations of motion may be integrated ana-
lytically with the result that important quantities, such as 
total fuel element temperature rise, peak power, and total 
energy release, are expressible concisely as functions of a 
single dimensionless parameter, 

(4) 
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The Fuchs-Nordheim Model with Variable 
Heat Capacity 

In this letter we shall describe how the values of certain 
quantities of physical interest, such as final fuel element 
temperature, peak power, etc., may be computed for a 
pulsed reactor with variable heat capacity. 

This may be seen most easily by introducing the dimension-
less variables 

X = t/r (5) 

Q = [al/C0(8kp)2]P (6) 

0 = (a/8kp) T (7) 

where the asymptotic reactor relaxation time, 

r = l/8kp . (8) 

Then Eqs. (2) and (3) become 

dQ/dx = (1 - 6)Q (9) 

dd/dx = aQ/(e + a). (10) 

Division of (9) by (10) and integration yields for the relation 
between power and temperature 

Q ~ Qo = 0 + 
(1 - a)92 03 

3cr 2<t 
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where Q0 is the initial value of the power, in the above de-
fined units. The value of the final temperature, Tw , may be 
obtained to an excellent approximation by setting Q = Q0 
in (11), since the peak power is generally so much greater 
than Qo • The useful result is 

8kv 
^ = — [-f(«r - 1) + fV(«r - l)2 + V 4 (12) a 

This reduces to 

T^ = 28kp/a for <r (13) 




