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Letters to the Editors 
Tables of Secant Integrals of the First and 

Second Kinds 

A class of integral functions which one frequently must 
evaluate in working shielding problems and other problems 
involving the attenuation of radiation through shields is 
the class known as the Secant Integrals. 

This class of functions can be mathematically defined as 

In+lie, b) = b» [ (sec 0')ne-»scc dd', w = 0,1, 2, 3, • • • (1) 
Jo 

where 
b = fit, single material 
b = Mî i 7 i = 1? 2, • • • for a number of layers 

fii = mass absorption coefficient for the i th material 
U = material thickness of the zth material. 

J I ( 0 , 6 ) = F(B, b) = [ e~bsec6' dd. (2) 
Jo 

Curves of these integrals have been published in 
Rockwell, "Shielding Design Manual ," TID-7004 (1956). 

/2(0, b) = G(0, b) = b f sec 0 V s e c 0 ' d6'. (3) 
J o 

This class of integrals arises wherever a buildup function 
B(b, 0), which appears beneath the integral sign, is ap-
proximated by a polynominal expression. For example, if 
we have a function r (0 , b) such that 

r(e,b) = r0[ B(b,e)e~b^6 dd (4) 

J o 

where B(b, 0) is approximated as 

B(b, 0) = 1 + ab sec 0. (5) 

a = constant. 
From the definition of the F(0, b) and G(6, b) functions, 
Eqs. (2) and (3), Eq. (6) may be rewritten 

r(0, b) = r o [F(0 , b) + aG(e, b)}. (6) 

h(e} b) = Hie, b) = b2 f sec2 d'e~b^e' de'. (7) 
h 

These integrals arise when the expression for buildup is 
written 

B (0, b) = 1 + ab sec 0 + j862 sec2 0; a, /3 = constant, (8) 

Then the function r (0 , b) in Eq. (4) may be written 

r ( 0 , b) = r„[F(0, b) + aG(6, b) + (3H(0, &)]. (9) 

The approximation given in Eq. (5) is sufficient for most 

shielding calculations which are used for practical applica-
tion. The secant integrals of the first and second kinds were 
computed by numerical integration of Eqs. (2) and (3) on 
an IBM-650 computer, and have been used extensively over 
the past several years in shielding calculations at Atomic 
Power Development Associates, Inc. They are available 
from that organization in tabular form. 

I wish to acknowledge with grateful appreciation the 
work of APDA's Computer Group who programmed the 
integrals, checked the results, and proofed the tables. 
Especial thanks are due Miss Yvonne Wilson and former 
employee Miss Agnes Leidel for their considerable efforts on 
this project. 
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Effective Resonance Integral Dependence on 

the Moderator Slowing Down Properties 

The effective resonance integral calculated according to 
the usual approximations NR (narrow resonance) or NRIA 
(narrow resonance infinite mass absorber) is independent 
of the moderator slowing down properties (e.g., 1). As the 
calculation of the heterogeneous assembly is usually re-
duced to the calculation of the modified homogeneous 
mixture, the above statement holds in both cases. I t also 
seems that beyond the experimental errors no influence of 
the moderator on the measured resonance integrals is found. 

In this paper we wish to show by exact calculation of the 
resonance absorption in an infinite homogeneous mixture 
for resolved resonances of U238 how far the moderator 
slowing down properties and the interference scattering 
actually influence the effective resonance integral and its 
temperature coefficient. We will also compare the exact 
results with the usual NR and NRIA approximations. 

The exact resonance absorption is calculated by numerical 
solution of the neutron slowing down equation for a mixture 
of elements: 

1 Cu 2 (V) 
Fin) = Z n - 7 , r FWe»'-»du'. (1) 

n 1 - atl JM_£fl ) 

The symbols have the following meaning: F(u) =<t>(u) 2 (u) , 
the collision rate density; <f>(u) is the flux of neutrons per 
unit lethargy at lethargy u; Z(u) = XI I2sn(u) + 2a„ (u)] 

n 
is the total macroscopic cross section at lethargy u; 2 s n (u) 
is the macroscopic scattering cross section of the nth 
element including its potential scattering; 2an(w) is the 
macroscopic absorption cross section of the nth element; 
an = [(An — 1 )/(An + 1)P, A,., is the atomic mass number 
of the nth element; en = In \/an . The suitable form for 
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numerical solution of (1) is obtained by differentiation of 
(1) with respect to lethargy. After some rearrangement 
one obtains 

dF(u) 2a(w) x , a« 
— = -7— F(u) + 22 i 

du 2U) n 1 — an 

Z8n(u — €n) 
F(U - 6

n
) 

2s(w) 
F(u) 

(2) 

2(w - en) * ^ "" 2(w) 

where 2a(?0 = X) 2 a n(i /) . The corresponding equations 
n 

of the NR and NRIA approximations are, respectively: 

dF(u) 12a(w) 
du 

dF(u) 

Z 2 (m) 

1 2a(w) 

(NR), (3) 

(NRIA). (4) du £*2*(u) 

The symbols introduced are: £ = 2 £ n 2 p n / X n 2pr„ ; is 
n 

the average logarithmic energy decrement of the nth ele-
ment; 2P„ is the macroscopic potential scattering cross 
section of the nth. element; £* and 2* (u ) are to be calculated 
similarly to the corresponding quantities without asterisk 
but neglecting the potential and the resonance scattering 
of the absorber. 

Solving numerically the equations (2), (3), or (4), one 
simultaneously computes the absorption rate. It is, in the 
lethargy interval between u\ and u* , 

- I V 11 

"2Sa (u) 

2 (w) 
F{u) du. (5) 

In the case of NRIA approximation, 2 (u) is to be replaced 
by 2* (u). The resonance escape probability for this lethargy 
interval is 

p(ui -> u2) = Al2/q(ui), (6) 

where the slowing down density at the lethargy u\ is 

2 M ) 
q(ui) = F(ud 

pu 

n 1 - an J U l 2(tt') 
F{u') du'. (7) 

In the case of the NRIA approximation again the potential 
and the resonance scattering of the absorber are to be 
neglected. If F(u) = const, for u ^ u\ (i.e., l /E 'spectrum) 
one obtains q(ih) = |F(?/i), or q(ui) = for the 

NRIA approximation. Using the computed resonance 
escape probability (6), the effective resonance integral 
I(ui —U2) is defined by 

I(ui u2) = -^o-p In p(ui U2). (8) 

In this definition, ap is the potential scattering cross section 
per atom of absorber. As we consequently use in all calcula-
tions the same definition (8), in the case of the NRIA ap-
proximation there is a slight dependence of the effective 
resonance integral on the moderator properties. 

In the integration of the equations (2), (3), or (4) one 
saves much machine time by appropriate choice of the 
lethargy step sizes. I t is desirable to choose the lethargy 
step sizes in such a manner that the error is the same in 
each lethargy step at the computation of the absorption (5). 
In this way, the important resonance with high contribu-
tions to the total absorption will be calculated more accu-
rately. As a rough estimate of the effective resonance 
integral of a single resonance, which is useful at the deter-
mination of the lethargy step sizes, we use the expression 

1 
\ / \ + (To/<T p 

1 + -
0.18 00'43 

1 + 0134 
00 2.5 ap\/e 

2.5<rPVe (To 

(9) 

is the effective resonance integral for infinite dilution; 
<70 is the total resonance cross section at the resonance 
energy E0 and T = O;0 = 4:kTE0/Ar2, k is Boltzmann's con-
stant ; T is the absolute temperature; A is the atomic mass 
number of the absorber and r is the total width of the level. 

At the time when the code was written our best approxi-
mation of the Doppler broadened line shape was 

t(x,0) = 
1 

1+x2 

1.4436 
1 + V2.6128 e 

3.3(1 - e-* *9) - 2.3 
x2 + 2.6128 6 

(10) 

[0.48 e-°-172*2" + 0.52 e-o.348*2/0]. 

Results of some calculations of the effective resonance 
integral of U238 for the 55 resolved resonances below 1000 
ev are given in Table I. The resonance parameters are 
taken from ref. 2. Each resonance is calculated as a single 
one without interference with other resonances. The ratio 
of the moderator to uranium atoms is determined by the 

T A B L E I 

R E S O N A N C E I N T E G R A L S OF U238 F O R R E S O L V E D R E S O N A N C E S B E L O W 1 0 0 0 E V AND S E V E R A L M O D E R A T O R S ( IN B A R N S ) 

o-p 
(barn) 

T 
(°K) 

Without interference scattering With interference scattering 
o-p 

(barn) 
T 

(°K) NR 
NR-NRIA Exact 

NR 
NR-NRIA Exact o-p 

(barn) 
T 

(°K) NR 
H20 C H20 D2O 

NR 
H20 C H20 D2O 

300 10.19 10.19 11.03 9.64 9.50 10.55 10.23 10.63 10.33 10.19 
30 1000 11.28 11.33 12.27 10.76 10.58 11.54 11.35 11.50 11.19 11.03 

( 0 (0.0076) (0.0078) (0.0079) (0.0079) (0.0079) (0.0065) (0.0076) (0.0057) (0.0058) (0.0058) 
300 35.63 41.95 40.28 38.55 38.36 35.69 41.97 39.80 38.60 38.26 

300 1000 42.92 51.17 50.04 47.40 47.12 42.95 51.17 49.40 47.40 46.97 
(« (0.0143) (0.0154) (0.0169) (0.0161) (0.0160) (0.0142) (0.0154) (0.0169) (0.0160) (0.0159) 
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FIG. 1. Variation of total and interference scattering in 
the U238 resonance near the resonance energy E0 = 102.8 ev 
for T = 300°K. 

potential scattering cross section per uranium atom ap , 
as the potential scattering cross section of the uranium 
atom itself is equal to 10 barns. In all three equations con-
sidered, (2), (3), and (4) (exact, NR, and NRIA), the same 
numerical integration with the same lethargy steps is used. 
Taking the calculated values for two temperatures, the 
temperature coefficient of the effective resonance integral 0 

I(T) = 7(T0)[1 + P(VT - VTo)}. (11) 

The results in the columns denoted by NR-NRIA are 
obtained calculating the six broadest resonances (6.68, 
21.0, 36.8, 66.3, 102.8, and 190.0 ev) according to the NRIA 
approximation and the remaining 49 resonances according 
to the NR approximation. Comparing the results of the 
NR and of the NR-NRIA approximations with the exact 
results for H20, it seems that the introduction of the NRIA 
approximation does not decrease very much the error of 
the pure NR approximation. 

Comparing the exact resonance integrals for three 
different moderators at the same potential scattering cross 
section per uranium atom ap , one sees noticeable differences 
between them. As indicated in eq. (2), these differences are 
caused by different maximal lethargy losses per collision on 
moderator atoms en = In \/an and by the different values 
of the scattering cross sections 2Sn of the elements of light 
and heavy water. The effects are somewhat smaller if one 
also considers the interference between the potential and 
the resonance scattering. It is interesting to note that the 
exact temperature coefficient practically does not vary with 
the moderator properties but is noticeably affected by the 
interference scattering at small values of the potential 
scattering per uranium atom <rp . As the increase of the 
resonance integral caused by the interference scattering is 
stronger at lower temperature, the temperature coefficient 
becomes smaller if one also takes into consideration the 
interference scattering. (Illustration for a resonance with 
relatively large interference scattering is given in Fig. 1.) 
The exact calculation compared with the NR approxima-

tion requires a reasonable increase of the machine time 
depending on the number of elements in the mixture. 

We wish to express our gratitude to Mr. H. J. Siegert for 
carrying out calculations on a digital computer. 
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Velocity Dependent Neutron Transport Theory 
with High Energy Sources 

In a recent paper Conkie (1) described a method of 
finding analytic approximate solutions to the Boltzmann 
equation dependent on both position and energy. Conkie's 
work was confined to the problem of thermal neutrons. In 
the present paper we wish to extend the method to the case 
where high energy neutrons are produced in the moderator. 
We use plane geometry and assume the moderator to be a 
slab occupying | x | ^ Xo and surrounded by vacuum. 
Heavy gas moderation is further assumed, with no capture, 
and with the neutron sources isotropic and monoenergetic 
and constantly distributed over the moderator. 

The neutron velocities thus cover a broad interval. As 
in the paper by Conkie we are mainly interested here in 
obtaining the thermal neutron distribution. We therefore 
calculate the slowing down density at some velocity v0 
close to but greater than \/2kT, and this density is then 
used to give the source term for the thermal region. The 
slowing down solution can be found in different ways. We 
use the well-known Greuling-Goertzel method (2). The 
source velocity is chosen to be 104 \/lkT and the moderator 
mass M is put equal to 3.6 to represent D20 (3). The reason 
is that we wish to perform the calculations for a moderator 
mass different from 1 but not too big. Details of the calcula-
tions can be found in ref. 4. Wc find the distribution of 
neutrons at v0 = 3.355 V2kT to be 

Ns(x, v, a) = lF0(x) + (1) 

where 

F0(x) = 2.154 - 2 exp(-Xxo) 

[0.6773z sinh x - (2.140 + 0.6773zo) cosh \x] 
(2) 

— 22.36 exp(—Xix0) cosh \ix + 2 exp(—X2x0) 

* Present address: Allgemeine Elektricitaets-Gesellschaft 
Frankfurt (Main), Germany. 


