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Letters to the Editors 
Tables of Secant Integrals of the First and 

Second Kinds 

A class of integral functions which one frequently must 
evaluate in working shielding problems and other problems 
involving the attenuation of radiation through shields is 
the class known as the Secant Integrals. 

This class of functions can be mathematically defined as 

In+lie, b) = b» [ (sec 0')ne-»scc dd', w = 0,1, 2, 3, • • • (1) 
Jo 

where 
b = fit, single material 
b = Mî i 7 i = 1? 2, • • • for a number of layers 

fii = mass absorption coefficient for the i th material 
U = material thickness of the zth material. 

J I ( 0 , 6 ) = F(B, b) = [ e~bsec6' dd. (2) 
Jo 

Curves of these integrals have been published in 
Rockwell, "Shielding Design Manual ," TID-7004 (1956). 

/2(0, b) = G(0, b) = b f sec 0 V s e c 0 ' d6'. (3) 
J o 

This class of integrals arises wherever a buildup function 
B(b, 0), which appears beneath the integral sign, is ap-
proximated by a polynominal expression. For example, if 
we have a function r (0 , b) such that 

r(e,b) = r0[ B(b,e)e~b^6 dd (4) 

J o 

where B(b, 0) is approximated as 

B(b, 0) = 1 + ab sec 0. (5) 

a = constant. 
From the definition of the F(0, b) and G(6, b) functions, 
Eqs. (2) and (3), Eq. (6) may be rewritten 

r(0, b) = r o [F(0 , b) + aG(e, b)}. (6) 

h(e} b) = Hie, b) = b2 f sec2 d'e~b^e' de'. (7) 
h 

These integrals arise when the expression for buildup is 
written 

B (0, b) = 1 + ab sec 0 + j862 sec2 0; a, /3 = constant, (8) 

Then the function r (0 , b) in Eq. (4) may be written 

r ( 0 , b) = r„[F(0, b) + aG(6, b) + (3H(0, &)]. (9) 

The approximation given in Eq. (5) is sufficient for most 

shielding calculations which are used for practical applica-
tion. The secant integrals of the first and second kinds were 
computed by numerical integration of Eqs. (2) and (3) on 
an IBM-650 computer, and have been used extensively over 
the past several years in shielding calculations at Atomic 
Power Development Associates, Inc. They are available 
from that organization in tabular form. 

I wish to acknowledge with grateful appreciation the 
work of APDA's Computer Group who programmed the 
integrals, checked the results, and proofed the tables. 
Especial thanks are due Miss Yvonne Wilson and former 
employee Miss Agnes Leidel for their considerable efforts on 
this project. 
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Effective Resonance Integral Dependence on 

the Moderator Slowing Down Properties 

The effective resonance integral calculated according to 
the usual approximations NR (narrow resonance) or NRIA 
(narrow resonance infinite mass absorber) is independent 
of the moderator slowing down properties (e.g., 1). As the 
calculation of the heterogeneous assembly is usually re-
duced to the calculation of the modified homogeneous 
mixture, the above statement holds in both cases. I t also 
seems that beyond the experimental errors no influence of 
the moderator on the measured resonance integrals is found. 

In this paper we wish to show by exact calculation of the 
resonance absorption in an infinite homogeneous mixture 
for resolved resonances of U238 how far the moderator 
slowing down properties and the interference scattering 
actually influence the effective resonance integral and its 
temperature coefficient. We will also compare the exact 
results with the usual NR and NRIA approximations. 

The exact resonance absorption is calculated by numerical 
solution of the neutron slowing down equation for a mixture 
of elements: 

1 Cu 2 (V) 
Fin) = Z n - 7 , r FWe»'-»du'. (1) 

n 1 - atl JM_£fl ) 

The symbols have the following meaning: F(u) =<t>(u) 2 (u) , 
the collision rate density; <f>(u) is the flux of neutrons per 
unit lethargy at lethargy u; Z(u) = XI I2sn(u) + 2a„ (u)] 

n 
is the total macroscopic cross section at lethargy u; 2 s n (u) 
is the macroscopic scattering cross section of the nth 
element including its potential scattering; 2an(w) is the 
macroscopic absorption cross section of the nth element; 
an = [(An — 1 )/(An + 1)P, A,., is the atomic mass number 
of the nth element; en = In \/an . The suitable form for 
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