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suming and expensive. Thus it is not practical to extend the 
integral method to coins of very large radii. 

The above comments should not be taken to indicate that 
there is little agreement between the two methods. Figure 1 
shows that there is a large area of agreement betwreen the 
two methods even when applied to detectors in water. 

It should be noted that for the data in Fig. 1 scatter 
was assumed isotropic (i.e. jl = 0) since most of the integral 
calculations were carried out on this basis. Calculations for 
a gold coin (of 5 mils thickness and 0.5 cm radius) in water 
to investigate the effect of anistropy of scatter in water 
have been made using both methods. The results are as 
follows: 
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In view of the uncertainty in reading the graphs for use 
in the variational method and finiteness of the numerical 
integrations of the integral method, the agreement as to 
the sign and magnitude of the effect of anistropy is quite 
encouraging. It is, however, unfortunate that the compari-
son was made in a region of small radii coins where the two 
methods do not agree too well in absolute magnitude. 

Finally it should be emphasized that all the dimension-
less plots in the second paper, i.e., Figs. 7-10 and 13-18, 
are not rigorously correct. They result from a compromise 
of about one percent between the dimensionless plots for 
gold and indium. Further investigation showed that the 
same dimensionless plots could be used for detector ab-
sorption cross section between 1.0 and 10.0 if one requires 
no more than plus or minus two or three percent accur-
acy. If, however, (1) high accuracy is required, (2) de-
tector absorption is not considerably greater than its scat-
ter, (3) scatter in the external medium is not isotropic, 
and (4) the detector is not in the size range covered, 
then one should return to the computer and calculate 
the particular cases of interest. 
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The Milne Problem with a Polynomial Source 
The Milne problem with a source of the form xn has been 

treated by a number of authors. Lundquist and Horak have 
expressed the emergent flux in terms of a recursion relation 
(1). Ueno has used the probabilistic approach to obtain the 
emergent flux in closed form (2). Busbridge has derived both 
the emergent flux and the angle integrated flux in the in-
terior (3). The latter is obtained from an iteration procedure 
which is shown to converge to the correct solution. The pur-
pose of this note is to derive closed expressions for the emer-
gent angular distribution and the total flux by using a 
method described in ref. 4-

In plane geometry the energy independent transport 
equation for isotropic scattering in the laboratory system is 

dx 
f1 1 

= du' + — Q(x), OigcoCL, (1) 
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where co = S8/S, /z is the direction cosine with the positive 
x-axis, and Q(x) is a volume source, x is measured in terms 
of the total mean free path. For a source of the form Q{x) = 
exp sx the angular distribution ^(0, — /JL), (0 ^ ju ^ 1), of 
neutrons emerging from the surface x = 0 of a semi-infinite 
slab can be shown to equal (2, 4) 

*(0, - m) = ( l /22 ) t f ( - l / S ) t f ( M ) ( l - MS)"1, M = 0> (2) 

where Hip) satisfies the integral equation 

H(n) = 1 + J W [ H(fx') (M + At')"1 0 ^ M ^ 1. (3) 
Jo 

The H-functions have been discussed extensively (3, 5, 
6). They are tabulated in the range 0 < w ^ 1 for small in-
crements of n (5, 7). Their moments, defined as 

hn = [ jj.nH(fi) du, (4) 

are tabulated for 0 ^ n ^ 20 (7). 
Expressing the source in terms of its Laplace transform, 

Q(X) = — / Q(S)6~ ds , 
Jy-ioo 

(5) 

one finds for the angular distribution, according to Eq. (2), 

zzi Liti J 7 _ . O O 

• (1 - jus)-1 ds, /x ^ 0. (6) 
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where the contour must correspond to that of Eq. (5). 
Equation (6) is quite general and can be applied to an 

arbitrary source Q(x). Its use will be illustrated by apply-
ing it to a source of the form Q(x) = Qxn. Inserting the 
Laplace transform of the source into Eq. (6) gives, 

nlQ . 7 +zoo # ( _ 1 / s ) i — fJ.) ~ — H(tx) / ; 
* ' ' 22 W 2« J7_fa0 8«+i( 1 - ĝ) ds. (7) 

If the contour is closed by an arc of radius R in the left-hand 
plane, the contribution of the integral along the arc will 
vanish as R—> co. H( — l/s) and 1/(1 — fts) are regular in the 
left-hand plane, so that the only singularities enclosed by 
the contour are at s = 0, where the integrand has a pole of 
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order n -j- 1. The residue at s = 0 is therefore 

A L [" dn H(-l/s)l 
n\ |_dsn 1 - fis Js=0' 

(8) 

The derivative can be evaluated by using Eq. (3) to ex-
press the argument in the form 

H (1 " MS)"1 

For small s this may be expanded into a power series, 

H 

where 

ao = 1, an = 

bi - 1 0 
b2 bi -1 

^(»>(0> fx) = (n l)gQ(l/ o)X)H(fi)an (ji). 
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/c is the positive solution of the equation 

— ln 1 + k = 1 
2k n 1 - k 

A comparison with Eq. (9a) shows that an(l/s) can be writ-
ten in the form, 

= - MS) -l" f #0*0(1 - M'S)"1 d ^ J 1. 
where 

Co = 1, 
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m ^ 1. 

n ^ l , (9a) 

The integrand will therefore have poles of various orders at 
s = 0. In addition to the residues at s = 0 and s = —k the 
integral must be evaluated around the cut. The final result 
is, 

bn bn-i bn-2 • • • b\ 

bi = ^ + ghi , bm = g(hm — i), m ^ 2, 

flf = ico(l - co)"1/2. 

Using Eqs. (8) and (9) and substituting into Eq. (7) gives 
the result, 

xjs^(x) = Q 
2(1 - w) 
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In order to find the space dependence of the angle inte-
grated flux one transforms Eq. (1) into an integral equation 
by integrating over x from 0 to The result is, 

^(0, -m) =:t / dx + —~ / e~x'^Q{x) dx, 
2m J0 22m JO (11) 

M = 0, 
where ^(a;) = j i i ^(x, /*) is the flux one wishes to deter-
mine. If 1/M is replaced by s, the two terms on the right of 
Eq. (11) become proportional to the Laplace transforms of 
the flux and the source respectively. Solving for the trans-
form of the flux and inverting one finds, 

+ 2 Jo 

>,1 - k2 

ani-rie-*'* dt] 

(15) 

H(rj) [H -^M? ) ' 
where 

An-m = Z (—iyCiCn-m 
z = 0 

Q(x). (12) 

For a source of the form Qxn one may substitute for 
xP(0, -1/s) from Eq. (10) and obtain, 

(13) 

The details of integrating expressions similar to the above 
are discussed in ref. 4 and will not be repeated here. The 
contour must be closed in the left half-plane, where the con-
tribution along the infinite arc vanishes. H(l/s) has a simple 
pole on the real axis at s = — k, 0 < k ^ 1, but is otherwise 
regular in the plane cut between —1 and — oo. The constant 

if n — m is even, 

= 0 if n — m is odd. 

The constants c are taken from Eq. (14a). 
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