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A Differential Equation for Calculating 
Doppler Broadened Resonances 

A Doppler-broadened Breit-Wigner resonance is com-
monly approximated (1) as the unbroadened value at the 
resonance energy multiplied by 

tf (A x) 
1 r exp -[(x - y)/p¥ 

1 + y2 
dy, (1) 

where 

P = W^VEnkT/A and 2(E - Eb)/T. (2) 

ER and r are the resonance energy and half-width; E is the 
laboratory-system energy of the incident neutron; JCT is 
the energy of thermal motion of the absorber, and A is its 
mass number. 

For the calculation of resonance integrals or detailed 
neutron flux, 4> (P,x) is required for many values of x but 
only one value of p for each resonance. Thus while the well-
known formula, 

3V . / N 1 
= Wlth ^ 0, x) = , 

dx2 P dp r ' 1 
(3) 

provides an alternative to numerically integrating the 
expression in Eq. (1), it suffers from the fact that 
can be obtained for a given p only after the complete x-
dependence has been determined for all smaller values. 
Therefore, for most programs requiring values of without 
recourse to tables, it would be very desirable to have a 
differential equation for each resonance only in the variable 
x, with the parameter (3 held constant. Such an equation 
would enable one to calculate entirely from those adjacent 
values that are needed anyway. 

One can verify, after considerable manipulation, that 
\J/ (p,x) in Eq. (1) satisfies the simple linear second order 
differential equation, 

i p* r + P2x </>'+(1 + %P2 + x2) * = 1, (4) 
where the primes denote total derivatives with respect to 
x. To make the definition complete, there are the boundary 
conditions, 

\K/3,0) = ( v V 0 ) exp(r 2 ) [1 - erfOT1)] 
and (0,0) = 0 (5) 

for starting at the resonance energy, and \p(p,x) o^ (1 + z2) - 1 

or other asymptotic expressions for starting at energies far 
from ER. The present author and K. W. Morton at Harwell 
have both derived Eqs. (4) and (5) independently a few 
years ago as incidental subjects in larger technical reports. 
These formulas have been found very useful in a variety of 
codes using several of the usual numerical methods for solv-
ing second order differential equations. 

If \p(p,x) is desired for a range of values of (3 as well as x, 
substituting the left side of Eq. (3) for in Eq. (4) will 
result in a more useful expression than Eq. (3) alone, since 
no derivatives higher than the first appear. By differentiat-
ing Eq. (4) twice with respect to x, eliminating the third 
derivative terms between the third and fourth order differ-
ential equations, and substituting the first derivative term 
of the resulting expression into Eq. (4), one can obtain a 
fourth order differential equation in x with only even de-
rivatives present. Eq. (3) can then be applied to get a second 
order total differential equation only in the variable 13 (3). 
Sometimes the quantity 

<P(P, x) 
1 r y exp -[(x - y)/(3]'2 

l + y2 
dy, (6) 

is desired to account for Doppler broadening the inter-
ference term in resonance scattering. This quantity can 
be evaluated conveniently in conjunction with Eq. (4) by 
means of the expression (2), 

2 dx (7) 

It would seem that the mesh spacing in x should be small 
compared to (3 in forward or central difference schemes for 
solving Eq. (4), since both derivative terms vanish with 
p. The danger of an indeterminancy would be absent if Eq. 
(4) were applied at one mesh point with its derivatives 
calculated from previous mesh points. 
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Crystal Spectrometer Measurement of the 
MITR Thermal Neutron Spectrum* 

A neutron spectrum in the wavelength range 4 A>\>0.65 
A (0.005 ev<jE/<0.2 ev) has been measured using a crystal 
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