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T A B L E I 

VARIATION OF F L U X AND D E N S I T Y DEPRESSION W I T H F O I L 
THICKNESS 

TO V w 5P x * dp 5P/SP* 
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0 . 1 0 . 1 4 5 3 5 9 0 . 1 4 9 5 6 7 0 . 9 7 1 9 0 . 1 6 8 8 3 2 0 . 1 7 7 2 5 1 0 . 9 5 2 5 

depression is serious for foils of quite small radius, more 
sophisticated calculations are required. On the other hand, 
the incident flux depression in graphite is an order of mag-
nitude smaller than the self-shielding, for gold foils 0.5 in. 
in diameter and a few mils thick, so that for graphite, or 
heavy water, the present type of treatment is probably 
adequate. 

It is a pleasure to acknowledge interesting discussions 
with Drs. G. R. Dalton, R. K. Osborn, and R. H. Ritchie. 
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Ratio of Fundamental and Second Order Har-
monics in Flux for Oscillator Experiments with 

Varying Amplitude of Reactivity Insertion 

In designing oscillator rods it is important to know where 
the limit in terms of reactivity lies if one is to be assured of 
a linear response. If the reactivity is small enough, the 
generated flux variation 8n will be small in comparison 
with the steady state flux level no , and one is allowed to 
make the linear assumption in the kinetic equations. In 
this case, for each frequency generated by the rod, only one 
flux component will be observed having the same frequency 
as the reactivity insertions by the rod. 

It is easy to conceive of a situation in which the flux 
variations cannot be treated assuming linearity in the 
kinetic equations. That is, for a given rod frequency, one 
will observe several frequencies in the flux. Two cases can 
be practically visualized where this phenomenon will occur. 

First, reactors which exhibit a peaking in the transfer 
function at power; that is, a region of tendency towards 
resonance due to the coupling of reactivity and physical 
motion in the core. In such a region the amplification will 
be higher and a "weak" oscillator rod might still be strong 
enough to generate a sizable second harmonic in the flux. 

Secondly, with the increasing number of reactors being 
built for power production, it is conceivable that one might 
not consider it necessary to design a special oscillator rod 
but would oscillate a control rod instead. This rod might 
be quite powerful in terms of reactivity and could generate 
a sizable second harmonic. 

In order to analyze oscillator data with harmonic content 
it is necessary to obtain analytical expressions of funda-
mental and higher harmonics as a function of the sinusoidal 
reactivity insertions.1 In most practical applications it is 
sufficient to obtain expressions for the fundamental and 
second harmonic. 

In a previous paper by the author (1, 2) expressions have 
been developed for the generalized case where nonlinear 
stability considerations were of prime interest. 

In this note the pertinent expressions have been ex-
tracted to obtain the amplitude ratio a = | X2/X1 | of 
second order harmonic and fundamental with varying 
amplitude Kex of reactivity insertions. These equations are 
applicable to any reactor provided the linear frequency 
response is known over a range equal to twice the nonlinear 
range of interest. This derivation is only valid for Kex con-
siderably below prompt critical. Furthermore, the fre-
quencies should not be too high in order to avoid the ap-
pearance of spatial modes in the flux (3). One nice aspect of 
this analysis is that all the data necessary to obtain in-
formation on nonlinear behavior is linear data. 

After some straightforward algebraic manipulations with 
Eq. (33) (1) and solving for the ratio of second order har-
monic to fundamental, we obtain for a zero power reactor: 

X2 I 
a 

ZP(2ju)Kex/2 
1 + {ZP(2j<o)ZP(j*>) ~ 2ZP(ja)Re[ZP(jc*)]}(Kex/2)> 

(1) 

where: 
Xi = amplitude of fundamental flux component, 

half peak to peak 
X2 = amplitude of second order harmonic in 

flux, half peak to peak 

1 In most practical cases one has an oscillator rod which 
does not generate a pure sinusoidal reactivity. The motion 
might be sinusoidal, but the reactivity is not. One will 
have for each mode in the input a corresponding mode of 
the same frequency in the flux. What one measures will be 
a superposition of these modes. By Fourier analysis one 
can obtain the individual components and one actually 
gets information on several frequencies with one experi-
ment. In the extreme, one can consider a random dis-
turbance in the reactor as a Fourier integral, and in prin-
ciple obtain information on an infinite amount of 
frequencies. But as Dr. Bethe pointed out in an early 
meeting at Argonne concerned with Reactor Safety, "You 
put a mess in and you get a mess out." Efforts are therefore 
made to make the reactivity insertion as purely sinusoidal 
as possible, because the processing of the flux data from 
nonsinusoidal oscillator experiments would become un-
reasonably cumbersome. 
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zero power transfer function 

jSi = fraction of neutrons that are delayed in 
ith group 

\ = decay constant for ith group 
Ke* = ineffective — 1 excess reactivity 
I = effective prompt neutron lifetime 
w = frequency (rad/sec) 
Re[ZP(ja>)\ = real part of ZP(jco) 
A quantity of interest is the amount of Kex necessary 

to generate a given ratio of second order harmonic to funda-
mental | X2/X1 | . Equation (1) represents a quadratic 
vector equation in Kex/2 which leads for a given ratio of 
"a" to two solutions. Only one solution is applicable. 

2m 
1 / 4 mc\ 
2\V) 

l / 4 w c V + (2) 

where: 

m = a W + /V) 
6 = 2 /3 x a 2 - ( « x 2 + ay2) 

c = a2 

ol = ZP(jco) = otx + jay 
0 = ZP(2jco)ZP(jco) - 2ZP(jco) Re [ZP(jco)] = (3X + j(3y 

The second solution has to be discarded because it leads to 
values of 2£ex near prompt critical for which the assump-
tions made in the original derivation become invalid. 

Similar to Eq. (1), we form the ratio " a " of second order 
harmonic and the fundamental for a reactor at power. 

X2 
Xi 

LP(2jco)[l + nQPK(jco)LP(jco)}Kex/2 

1 + 
LP(2jco)LP(jco) + LP(2jco)n,PK(jco)[LP(jco)}2 

+ mPK * (jco) LP* (jco) LP (2jco) 
• {LP(jco) + noPK(jco)\LP(jco)}2\ 

- 2 LP(jco) Re [LP (jco) + noPK(joo) | LP(jco) K 
(KeJ 2)2 

(3) 
where: 

P = power level in Mw 
K(jco) — (Vk/k)/Mw power coefficient 
no = steady state flux (Since we are interested in 

reactivity changes with respect to the steady 
state flux no , we are free to set no = 1.) 

LP (jo>) = ZP(jm) 
1 - ZP(ju)PK(ja) 

hn 
n0 j 

Ke ( 4 ) 

Equation (4) follows from the following symbolism as-
suming linearity (2). 

8k (jco) = Kex(jco) + noPK(ju) dn(jco) 
no (5 ) 

The second term in Eq. (5) assumes that changes in reac-
tivity are linear functions of the power variation. We have 
written both the zero power transfer function ZP(jio) and 

* indicates conjugate complex function. 

6n ( Jw ) 

FIG. 1. Feedback system 

the resulting incremental reactivity in the frequency do-
main and we can represent ZP(jco) and Eq. (5) symbolically 
in a feedback system shown in Fig. 1 (5). In this symbolic 
notation the feedback is positive. This is done in order to 
retain the physical meaning of the sign of the power coeffi-
cient. 

In an analog manner, as for the zero power case, we can 
solve for Kex necessary to obtain a given ratio a = | X2/X1 | 
for a reactor under power. 

For the terms in Eq. (2) we get (and again the second 
solution has to be discarded): 

m = a2(\x2 + Xy2) 
b = 2a2\x - (dx2 + V) 
c = a2 

5 = LP (2jco)[l + noPK (jco) LP (jco) ] 
X = LP (2jco)LP(jco) + LP (2jco)noPK (jco) [LP (jco) ]2 

+ noPK* (jco)LP* (jco)LP (2jco) 
{LP (jco) + noPK (jco) [LP (jco) ]2} 
- 2LP(jco) Re [LP(jco) + n0PK(jco)\ LP(jco)\2] 
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Simplified Calculation on Thermal Transient 
of a U0 2 Fuel Rod 

The thermal behavior of a cylindrical UO2 fuel rod is 
characterized by many parameters, namely, a high thermal 
resistance and a relatively small capacitance of the ceramic 




