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region including gains and losses from xenon, temperature 
effects and control rod movement in that subvolume) re-
mained constant with time; and by similar control 
maneuvers assume that the "pseudo k j ' of subregion B 
is also held constant writh time. Then no flux distortion 
effects due to the xenon changes taking place within sub-
regions A or B would occur, and the feared oscillation 
could not develop. Thus, use of the local buckling, or 
"pseudo k x " concept can make the "inherent instability" 
phenomenon academic if one is only astute enough to move 
the right amount of rod in the right place at the right time. 

Here the concept of "trend" control makes the astute 
control maneuver simple. A monitor point within sub-
volume A sensitive to neutron flux level informs the 
operator whether that region is increasing or decreasing in 
flux level. With the total reactor power held constant, such 
a local change in flux corresponds to a very long reactor 
period measurement thus indicating a local change in 
reactivity. Therefore, a control tip within subvolume A is 
inserted or withdrawn to keep the local flux indicator, and 
thus the local "pseudo at a near constant level. Simi-
larly, the trend is noted in region B, and compensating rod 
moves are made in region B. 

Probably the main reasons these concepts work in 
practice (which they have for many years) are that: (i) 
they are based on sound reactor physics concepts; and 
(ii) reaction times of the instruments and operators are 
very short compared to the 9.2 and 6.7 hr half-lives of Xe135 

and its precursor I135, respectively. 
One other point—the possibility that these slow (order 

of hours) xenon oscillations could threaten reactor safety 
(4) would imply that the reactor under study was not 
adequately instrumented and operated to control those 
flux distortions which frequently arise due to other operat-
ing factors. In other words, xenon spatial oscillations 
should be regarded as an operating efficiency factor, not 
as a nuclear safety hazard. 
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Thermal Neutron Flux in a Cell with 
Temperature Discontinuities 

In solving the reactor equations, it is customary to treat 
the thermal neutrons as a monoenergetic group, with the 
slowing down density as a source term. By taking appropri-

ately averaged cross sections for this equivalent thermal 
group, reasonably accurate calculations can be made for a 
homogeneous reactor. Many design problems in practice, 
however, involve adjacent regions with markedly different 
temperatures. The lattice cell of a reactor may contain 
high-temperature fuel elements, while the coolant may be 
below the boiling point of water. The interpretation of 
lattice measurements, in which the part of the lattice being 
studied is held at an elevated temperature, is complicated 
by uncertainties as to the width of th£ transition region 
caused by the temperature discontinuity. 

Although a straightforward multigroup approach will 
solve the problem to any required degree of accuracy, many 
groups are needed to represent the energy distribution 
adequately, and the thermal calculation may require more 
effort than the rest of the analysis. As an alternative for 
design calculations, the following method employs the 
formalism of few-group theory while retaining the qualita-
tive features of the neutron distribution in space and 
energy. The basic procedure is to approximate the actual 
neutron distribution by a superposition of overlapping 
thermal groups, one in equilibrium with each region of 
uniform temperature in the system. Neutrons in the non-
equilibrium groups will then make transitions into the local 
equilibrium group at a rate which can be easily calculated 
for a heavy gas moderator. 

Consider a system made up of N regions of different but 
uniform temperature and composition. Within the nth 
region, let xn(E) denote the equilibrium thermal neutron 
distribution (that is, the steady-state distribution that 
would exist in an infinite medium) normalized to unity with 
some convenient cutoff energy. The total flux, as a function 
of position and energy, will be approximated by 

<Kr, E) ^ *,(r)Xi(#) + • • • + <t>N(r)XN(E) (1) 
where <f>n(r) is the total flux of neutrons at r in the group in 
equilibrium with region n. The individual group fluxes are 
defined throughout the system, and in general will have con-
siderable overlap in energy. 

Within region 1, the group fluxes will satisfy balance 
equations of the form: 

-Z>!VVl + Sal</>1 = H + Siat̂ N + ? 
(2) 

~DnV^n + (2aft + Sln)0n = 0, U = 2, ' , N 

where Dn and 2an are the diffusion constant and absorption 
cross section for neutrons of the nth group, Si„</>„ is the rate 
at which neutrons are transferred from group n to the 
equilibrium group 1, and q is the slowing down density of 
fast neutrons, all evaluated in region 1. Corresponding 
equations hold for each of the other regions. Although 
diffusion theory has been assumed, transport approxima-
tions such as spherical harmonics or theory could also 
be used. 

The transfer cross sections, 2i„ , can be evaluated im-
mediately under the assumption of a heavy gas moderator. 
To first order in = 1/A, the ratio of neutron to moderator 
mass, the differential scattering cross section can be 
written (1) 
2n(E E') ^ 208(E - E') , (3) 

+ o- {E' + E)V(E'/E)[8'(E' - E) + kTb'\E' - E)\ 

where 20 is the bound atom cross section, T is the Kelvin 
temperature of the moderator, and k is the Boltzmann 
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constant. The average energy loss per scattering collision 
in medium 1 is then 

/»CC 

AE = J dE'(E' - E)XS(E E 

^ MEi - E) 

V i > 'ZS(E -> E') 
(4) 

(Ei - En)/AEl = 1/2/X (5) 

2i« = 2jul 

which can also be written £2.s , where £ is the usual 
logarithmic energy loss at high energies. If the moderator 
contains more than one isotope, the transfer cross sections 
for each component will combine additively. The remaining 
group constants can be obtained by averaging 2a and D 
over the corresponding group spectra (for a heavy gas model 
D{E) can be taken as constant if the calculation is only to 
first order in the mass ratio). 

With the group constants determined, the group equa-
tions (2) can be solved analytically in one-dimensional 
geometries. Defining 

= W D ! RU2 = S,N/Z>, 

^ = (SOB + SI„)/z>» 

within region 1, the corresponding group fluxes are given by 

*,(/•) = A, h(m r) + BiKoim r) + " r + £ <fr»(r) 2al n=2 ~ Vnl (7) 

Mr) = An Mvn r) + Bn Ko(vn f), U = 2, • • • , N 

where Iq and Ko are, for example, modified Bessel functions 
for the case of cylindrical geometry. The 2N2 constants 
An , Bn are determined by requiring continuity of flux and 
current for each group at each internal boundary and the 
appropriate albedo at the center and outermost boundary. 

For a cell consisting of a fuel rod surrounded by modera-
tor, neutrons entering the fuel would require on the order 
of 100 collisions to reach equilibrium, and would either be 
absorbed or escape from the fuel long before this occurred. 
However, selective absorption will distort the exit spec-
trum; calculations by Stuart (2) indicate that it is 
accurately represented by a shifted Maxwellian distribution 
corresponding to a higher neutron temperature. The pre-
ceding analysis can therefore be applied to find the dis-
tribution of neutrons between the equilibrium and exit 
spectra as a function of position in the moderator, as well 
as the entrance spectrum, by using an appropriate albedo 
matrix to describe the fuel rod. 

In order to evaluate the appropriateness of the group 

model, one can apply it to the case of a uniform medium 
containing a temperature discontinuity, for which an 
analytical solution is available (3). Assuming isotropic 
scattering, no sources or absorption, and taking the tem-
perature discontinuity at x = 0 in a plane perpendicular to 
the x axis, the group fluxes are found to be 

where Ei = 2kTi is the equilibrium energy in medium 1; 
that is, neutrons at Ei on the average neither gain nor lose 
energy during their next collision. 

For neutrons in group n, which must lose an amount of 
energy Ei — En on the average in order to reach equilibrium, 
the mean number of collisions required is 

Mx) = 

Mx) = 

,X!L 

1 - \e~x<L, 

x < 0 

x > 0 

x < 0 
x > 0 

(8) 

Since group n neutrons undergo scattering collisions at the 
rate 2s</>n , and l/2ju collisions are required to transfer a 
neutron to group 1, the rate at which neutrons are trans-
ferred, Si,i4>n , is 260»/(1/2/z). The transfer cross section is 
therefore 

The relaxation length, L = agrees with the result 
previously obtained by Kottwitz. For this particular case, 
therefore, the group model reproduces the essential features 
of the exact solution. If scattering is linearly anisotropic 
and absorption is present, the relaxation length gen-
eralizes to 

(6) with 

L = VD/(&S + 2a) 

D = 1/3(2*,- + 2 a ) (9) 
Analytical solutions for more than a few groups and 

regions rapidly become unwieldy. However, most few-
group computer programs, which numerically integrate the 
conventional group equations, can be modified to deal with 
(2) by including up-scattering. In the computation of the 
flux for a given group, the usual source term will consist of 
the actual fission source along with neutrons scattered 
down from higher groups. The necessary modification to 
such a code simply requires the addition of a term corre-
sponding to neutrons scattered upwards in energy from the 
lower groups, calculated from the last previous flux iterates. 
Since these are available within the fast memory for most 
few-group programs, the necessary recoding is quite trivial 
and involves no change in the over-all program logic. 

There are various alternatives to the intuitive derivation 
of the group equations given here. For the case of a two-
temperature system containing no sources or absorption, 
Kottwitz has obtained the group equations by requiring 
that the zeroth and first energy moments of the balance 
equation be preserved (4). A more general derivation can 
be given by writing a variational principle for the balance 
equation and taking expression (1) as a trial function. 
Using the heavy gas model, Maxwellian fluxes, and adjoint 
fluxes which are linear in energy, equations of the form (2) 
can be derived (5) for a two-region system. The coefficients, 
however, turn outy to involve correction terms unless the 
absorption vanishes, since otherwise the trial spectra chosen 
do not describe equilibrium neutron groups. A still more 
general procedure is to write a variational principle without 
particularizing the energy transfer kernel and to use 
numerically calculated energy distributions for the direct 
and adjoint fluxes. This approach has been carried out by 
Calame and Federighi (6, 7) to provide a general numerical 
space-energy code in both the diffusion and double P\ 
approximations. In this case it is found that the complete 
space-energy distribution can often be approximated by 
superimposing only two characteristic spectra, although 
the physical interpretation then becomes somewhat less 
direct. 
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Local Flux Distributions in ORR Fuel Elements 
A detailed study of the thermal neutron flux distribution 

in the ORR is being made by the Operations Division of 
the Oak Ridge National Laboratory. Results to date have 
indicated that rather large flux gradients exist radially 
across the MTR type fuel element emplo3^ed in this reactor 
and that these gradients are strongly dependent on the 
fuel concentration in the element being investigated as 
well as that of the adjacent elements. 

The technique used to measure flux is the one considered 
as standard at the ORR (1). Basically the method consists 
of measuring the induced activity in a 20-mil cobalt wire. 
The wires are put into aluminum holders which are placed 
in the coolant channels between fuel plates. The wires are 
then irradiated for one hour at a power level of 20 kw. 

Figure 1 shows the geometrical pattern of the standard 
ORR core, and Table I presents the complete set of fuel 
weights loaded in the core for each experiment represented 
by the subsequent figures. Because of the operating schedule 
of the ORR and the time lapse between data gathering and 
analysis, loading of identical cores was impossible. A flux 
traverse along the center plane of the " 4 " column at a 
distance 16 in. from the top of the fuel plates is shown in 
Fig. 2. The traverse is shown at 16 in. because the peak 
axial flux occurs at approximately 16 in. from the top of the 
fuel plates. Fluxes have been normalized to the highest 
measured value in the " 4 " column at the 16 in. level. 

It must be pointed out that 131 g of U235 in the shim rod 
gives the same fuel density in its fuel plates as that for a 
200-g fuel element. However, due to the structure of the 
shim rod, the metal to water ratio of the fuel follower is 
not the same as it is for a fuel element. 

It is interesting to note that the ratio of maximum 
extrapolated flux to minimum measured flux along the 
center plane is 2.3 for A-4 and 1.3 for E-4. It is perhaps 
more interesting to observe that the ratio of maximum 

FIG. 1. Core loading pattern of ORR 

T A B L E I 

F U E L W E I G H T IN GRAMS LOADED IN O R R FOR THE VARIOUS 
F L U X M E A S U R E M E N T S 

Position Figs. 2 and 3 Fig. 4 Fig. 5 

A-4 163 176 169 
A-5 169 161 169 
A-6 166 168 167 

B-3 193 192 192 
B-4 142 46 132 
B-5 153 140 156 
B-6 110 120 102 
B-7 189 189 188 

C-3 131 112 148 
C-4 148 151 147 
C-5 163 140 163 
C-6 146 200 180 
C-7 157 147 157 
C-8 161 157 200 

D-2 159 179 159 
D-3 189 173 175 
D-4 91 102 82 
D-5 161 138 160 
D-6 69 131 60 
D-7 188 157 157 
D-8 142 170 121 

E-2 160 183 157 
E-3 189 189 172 
E-4 188 188 200 
E-5 158 152 179 
E-6 159 173 175 
E-7 187 156 158 
E-8 162 142 200 

F-7 148 158 148 

extrapolated flux to center flux is 1.4 for A-4, 1.3 for C-4, 
and 1.1 for E-4. For routine core flux measurement in the 
ORR, it is common practice to measure fluxes in the geo-
metric center of each fuel element. However, one sees that 
such a measurement gives a value far below the maximum 
flux in certain cases. The implications of such a situation 


