pendent of the material properties of the system. Any perturbation in the material properties α , β and the multiplication factor γ is expressed as a variation of $\beta^{(0)}$. The usual first-order perturbation formula is

$$\delta \epsilon = (\psi^+ \cdot (\delta \beta^{(0)}) K^{(0)} q^{(0)}) \tag{9}$$

The scalar product $(\psi^+ \cdot \varphi)$ of ψ^+ with a vector $\varphi(\mathbf{v}, \mathbf{r})$ is defined as

$$\iint \psi^+(-\mathbf{v},\mathbf{r})\varphi(+\mathbf{v},\mathbf{r}) \ d^3v \ d^3r$$

in the physical case $\epsilon = 1$, and therefore we equate $\delta \epsilon$ to zero. Using (7) and (5), the above expression for $\delta \epsilon$ may be rewritten as follows

$$\begin{split} \delta \epsilon &= 0 = \iiint \psi^{+}(-\mathbf{v}, \mathbf{r}) (\delta \beta^{(0)}(\mathbf{v}, \mathbf{v}'; \mathbf{r})) \psi(\mathbf{v}', \mathbf{r}) \ d^{3}v \ d^{3}v' \ d^{3}r \\ &= \iiint \psi^{+}(-\mathbf{v}, \mathbf{r}) \delta(\beta(\mathbf{v}, \mathbf{v}'; \mathbf{r})/\gamma) \psi(\mathbf{v}', \mathbf{r}) \ d^{3}v, \ d^{3}v' \ d^{3}r \\ &- \iint \psi^{+}(-\mathbf{v}, \mathbf{r}) \psi(\mathbf{v}, \mathbf{r}) \delta\alpha(\mathbf{v}, \mathbf{r}) \ d^{3}v \ d^{3}r \end{split}$$
(10)

In general the variation $\delta \alpha$ consists of a variation $\delta \Sigma$ of the cross sections and a variation $\delta \lambda / v$ of the fictitious absorption cross section λ / v due to a time variation exp λt of the system (4).

In the same way any number of terms in the perturbation series for $\epsilon (= 1)$ may be written down immediately and equated to zero. Thereby we get relations between the changes in α , β and γ . For example the second-order perturbation formula

$$\delta \epsilon = (\psi_{1}^{+} \cdot \delta \beta^{(0)} K^{(0)} q_{1}^{(0')}) + \sum_{\epsilon \neq 1} \frac{(\psi_{1}^{+} \cdot \delta \beta^{(0)} K^{(0)} q_{\epsilon}^{(0)})(\psi_{\epsilon}^{+} \cdot \delta \beta^{(0)} K^{(0)} q_{1}^{(0)})}{1 - \epsilon}$$
(11)

yields the relation

$$\begin{split} \delta\epsilon &= 0 = \left(\frac{\delta\gamma}{\gamma}\right)^{2} \sum_{\epsilon \neq 1} \frac{1}{1 - \epsilon} \left\langle 1 \left| \frac{\beta}{\gamma} \right| \epsilon \right\rangle \left\langle \epsilon \left| \frac{\beta}{\gamma} \right| 1 \right\rangle \\ &- \left(\frac{\delta\gamma}{\gamma}\right) \left\{ \left\langle 1 \left| \frac{\beta}{\gamma} \right| 1 \right\rangle + \sum_{\epsilon \neq 1} \frac{1}{1 - \epsilon} \left[\left\langle 1 \left| \frac{\beta}{\gamma} \right| \epsilon \right\rangle \left\langle \epsilon \right| \left(\frac{\delta\beta}{\gamma} - \delta\alpha\right) \right| 1 \right\rangle \\ &+ \left\langle 1 \left| \left(\frac{\delta\beta}{\gamma} - \delta\alpha\right) \right| \epsilon \right\rangle \left\langle \epsilon \left| \frac{\beta}{\gamma} \right| 1 \right\rangle \right] \right\} \end{split}$$
(12)
$$&+ \left\{ \left\langle 1 \left| \left(\frac{\delta\beta}{\gamma} - \delta\alpha\right) \right| 1 \right\rangle \\ &+ \sum_{\epsilon \neq 1} \frac{1}{1 - \epsilon} \left\langle 1 \left| \left(\frac{\delta\beta}{\gamma} - \delta\alpha\right) \right| \epsilon \right\rangle \left\langle \epsilon \left| \left(\frac{\delta\beta}{\gamma} - \delta\alpha\right) \right| 1 \right\rangle \right\} \end{split}$$

where

$$\langle \epsilon' \mid \delta \alpha \mid \epsilon'' \rangle = \iint \psi_{\epsilon'}^+ (-\mathbf{v}, \mathbf{r}) \psi_{\epsilon''}(\mathbf{v}, \mathbf{r}) \delta \alpha \cdot d^3 v \ d^3 r$$

$$\left\langle \epsilon' \mid \frac{\beta}{\gamma} \mid \epsilon'' \right\rangle = \frac{1}{\gamma} \iint \psi_{\epsilon'}^+ (-\mathbf{v}, \mathbf{r}) q_{\epsilon''}(\mathbf{v}, \mathbf{r}) d^3 v \ d^3 r$$

$$\left\langle \epsilon' \mid \frac{\delta \beta}{\gamma} \mid \epsilon'' \right\rangle = \frac{1}{\gamma} \iiint \psi_{\epsilon'}^+ (-\mathbf{v}, \mathbf{r}) \delta \beta(\mathbf{v}, \mathbf{v}'; \mathbf{r}) \psi_{\epsilon''}(\mathbf{v}', \mathbf{r}) \ d^3 v \ d^3 r$$

$$(13)$$

REFERENCES

- 1. E. D. PENDLEBURY, Proc. Phys. Soc. (London) A68, 474 (1955).
- 2. J. H. TAIT, Proc. Phys. Soc. (London) A67, 615 (1954).
- B. DAVISON, "Neutron Transport Theory," Chapter XIV and p. 282. Oxford Univ. Press, London and New York, 1957.
- 4. See reference 3, chapter III.

G. RAKAVY

Department of Theoretical Physics, Hebrew University, Jerusalem, Israel Received February 9, 1960

Errata

Volume 7, Number 3, March 1960, in the article by Morton R. Fleishman and Harry Soodak entitled "Methods and Cross Sections for Calculating the Fast Effect," pp. 217–227:

Page 224, Table II change:

(0)

 σ_{1t} for U²³⁸ from 4.52 to 4.541 σ_{1c} for U²³⁸ from 0.054 to 0.032 σ_{1t} for UO₂ from 7.77 to 7.796 σ_{1c} for UO₂ from 0.099 to 0.077