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FIG. 1. Analytical startup curves. 

plotted in Fig. 1. To compare these results with those ob-
tained by the use of pump characteristic curves, Eqs. (7) 
and (8) were applied to a single suction Voith pump, and 
a double suction DeLaval pump. The characteristics of 
these pumps are represented by the polynomials given in 
Table 1 of reference 1. 

The curves obtained from the analytical solution and 
from the characteristic curve solutions show similar flow 
startup patterns. For small values of the half-time ratio 
ot the correspondence is very close. This is to be anticipated 
since low values of a indicate high inertia impellers which 
require a longer time to be brought up to steady-state 
operating speed. During this period, the fluid is brought up 
slowly to steady-state flow, with the result that there is no 
large change in the ratio of speed of pump to velocity of 
flow. The constant-characteristic-based analytical solution 
assumes that this ratio remains constant. Therefore, for 
small values of a the condition is closely satisfied. 

Large values of a. imply the presence of impellers with 
low inertia. During constant torque startup, such impellers 
would approach steady-state operating speed much more 
rapidly than the flow would approach steady-state flow. 
This produces a higher pressure across the pump than there 
would be if the flow increased proportionately with pump 
speed. The higher head across the pump would then ac-
celerate the flow and accomplish the startup transient more 
rapidly than the analytical constant-characteristic solution 
would indicate. This was observed in comparing the ana-
lytical curves for high a with the true characteristic curves. 
From a practical point of view this discrepancy is not im-
portant, since with very light impellers the flow is estab-
lished so rapidly that it is substantially a step jump. In 
view of this, the curves in Fig. 1 should give a fair estimate 
of the startup flow transient under constant impeller torque. 
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Spatial Distribution of Resonance Absorption 
in Fuel Elements 

The spatial distribution of resonance absorption in fuel 
elements is a problem of high importance in reactor calcu-
lations. Usually most investigators (1, 2) have used Monte-
Carlo methods which are very time-consuming and do not 
permit general conclusions. In this note an anatytic ap-
proach to the problem is presented which leads to simple 
results and may well be generalized for similar applications. 

The energy variation of cross section for strong resonance 
absorbers such as U238 may be described by a succession of 
Breit-Wigner resonances. Now, if it is possible to evaluate 
the spatial distribution of resonance absorption which may 
be attributed to some isolated resonance, one may expect 
the total absorption to be describable in terms of contribu-
tions from individual resonances. 

Let us consider a cylindrical lump, immersed in moder-
ator, which contains a strong resonance absorber uniformly 
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distributed in the interior of the lump. We shall require that 
the condition holds 

20R » 1 (1) 
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Notice the fact that integration over the resonance (vari 
able £) may be performed before surface integration. 

If the variable u from the expression z = p sinh u 

is introduced, it can be shown that 
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If only the main term is retained one arrives at 

A(r) = 2 EZ2 s* 
Eq yj7T2O R 

where 2R is the diameter of the cylindrical fuel rod and S0 
the macroscopic absorption cross section at resonance 
energy. The source distribution of resonance neutrons will 
be assumed to be homogeneous and isotropic within the 
total moderator volume. This latter assumption may 
equivalently be expressed as follows: Resonance neutrons 
passing through the interface are distributed according to 

Jo 
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the last integral contributing the factor 0.8740. The spatial 
distribution in the interior of the cylindrical fuel element, 
therefore, is given in the form 

(2) 
A(r) 

where 6 is the angle between the normal to the surface and 
the direction of the neutron. It is further assumed that the 
epithermal flux spectrum satisfies the asymptotic 1/E 
dependence. 

Basic to our procedure is the acceptance of first collision 
theory, that is, scattering in the absorber lump is com-
pletely neglected. Similarly Doppler-broadening of reso-
nances is also ignored. 

The resonance absorption at a distance r from the axis is 
given by 

Vso R \R ) 
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with 
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For strong resonance absorbers like U238, 20 is of the order 
of 103. Therefore the asymptotic expression is valid in the 
whole volume apart from a thin surface layer. 

The result [Eq. (9)] is surprising and important. It means 
that the radial distribution in cylindrical lumps for any 
resonance is given by a universal function f(r/R), irre-
spective of the parameters of individual resonances. The 
radial function f(r/R) is defined by 
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Using the integral representation 
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f(k) is given in terms of the hypergeometric series 

f(k) = 2TT[F(f, J ; 1; k2) - J W ( f , 2 ; k2)] (12) 

Figure 1 shows the behavior of the radial function f(k). An 
obvious generalization leads to similar functions for other 
geometries: 

Slab (thickness 2d): 
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Sphere: 

From condition (1) for distances r satisfying the inequality 
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the asymptotic expression of the modified Bessel function 
Io may be used 
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FIG. 1. Spatial distribution of resonance absorption in different geometries; slab, cylinder, sphere. 
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FIG. 2. Radial distribution of resonance absorption in 
cylindrical rods of different diameters. Comparison of cal-
culated curves with measurement. 

It should be noted that both the cylindrical and spherical 
distributions show the same asymptotic behavior x~112 

near the boundary which is characteristic of the slab case. 
The results given may be compared with experimental 

data published by Hellstrand U). Figure 2 shows the radial 
distribution of resonance absorption measured by the nep-
tunium activity in irradiated rods of different diameters. 
A constant volume absorption corresponding to a volume 
contribution of 2.59 barn to the effective resonance integral 
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FIG. 3. Resonance absorption in a fuel rod (R = 1.46 cm). 
Comparison of First-Collision-Theory with Monte-Carlo 
results [Morton (2)}. 
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has been adopted. The theoretical curves are calculated 
from Eq. (9), with the only requirement that the theoretical 
curve (rod diameter 8 mm) should agree with the experi-
mental value for the point r = 0. 

One further point of evidence comes from a comparison 
with Monte-Carlo calculations made by Morton (2), Fig. 3. 
In this case the analytic curve, without volume contribu-
tion, is shown. The Monte-Carlo results are derived under 
more realistic premises: Doppler-broadening of resonances, 
inclusion of resonance scattering, higher order collisions 
with energy degradation. The results, nevertheless, show 
the same trend as the "exact" distribution. 

In the immediate vicinity of the surface the radial func-
tion no longer is independent from resonance parameters. 
For cylindrical rods one obtains 

A(x) + <>» V2o R 

dt 
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A Note on the Perturbation Method in Neutron 
Transport Theory 

In this note the perturbation formula of neutron trans-
port theory (1-8) is derived by the method of ordinary 
perturbation theory used in quantum mechanics. Using the 
standard methods, formulas for higher order perturbations 
may be written down immediately. 

As is well known the Boltzmann equation 

ft grad \p(y, r) + a(v, r)^(v, r) = q(v, r) 

' q(y ,r) =Jf3(v,v'; r)^(v'; r) d3v' (1) 

can be converted into an integral equation 

xp(v, r) = JK<a)(y; r, r')q(v, r') dV 

yq(v, r) = J/3(v, v'; r)^(v', r) dV 

which in turn can be expressed in operator form 

xP = K{a)q yq = (3^ 

or y\p = Kj3xp 
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in which x = R — r is of the order 1/So and F2(£) is defined 
by 

xp being the directional flux, q the emission density, a the 
total cross section, 0(v, v'; r) the "transfer cross section" 
of neutrons of velocity v into a velocity v' lying in the ele-
ment dsv of velocity space. The eigenvalue y which is 
the multiplication in one "scattering generation" is intro-
duced instead of the reactivity. The kernels K(a) and 0 
possess the following symmetry properties: 

2£>>(v; r, r') = #<«>(-v; r', r) 

0(v, v'; r) = /3(—v, - v ' , r) 
(4 ) 

Manner and Springer (5) recently investigated the activa-
tion of plane resonance foils with similar methods and 
showed good correspondence with experimental results. 
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In order to prove the perturbation formula we further 
transform the Boltzmann equation into a new form. De-
fining 

0«»(v, v'; r) = (l/7)/3(v, V; r) - «(v, r) 8VV, (5) 

the Boltzmann Eq. (1) becomes 

a grad xp(v, r) = q^(v, r) 
(6) 

qHv, r) = J jS(0)(v, v'; r) d?v' 

which, in turn, can be written in operator form 

xp = if(0)g(0) qi 0) = 0(0)^ (7) 

or 
^ = a nd qw = ^(o)Kwqw 

We generalize these equations by introducing an eigen-
value e, 

and 

fiWKWq™ = eq(€0) 

(8 ) 

The physical solution for the flux 1p corresponds to the 
eigenvalue e = 1, all other solutions correspond to eigen-
values smaller than one. Two further equations with the 
same eigenvalues are formed with the transposed operators. 
Considering the symmetries (4), it is readily seen that the 
transposed of the equation for the emission density q(e0) is 
equivalent to the Boltzmann equation (1) with /3 replaced 
by (l/e)/3, a by (1 /e)a and all the velocities reverted, i.e., 
the adjoint Boltzmann equation. The solutions xpe+(—v, r) 
of the adjoint Boltzmann equation being eigenvectors of 
(0(o)/£(o)) a r e orthogonal to the eigenvectors q(e0) of (fiK) 
belonging to different eigenvalues. This last fact can now 
be used to formulate perturbation theory in a straight-
forward manner. 

Kw is the matrix K{a) for a = 0 and is completely inde-




