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by the crystal. The presence of neutrons of energy < Ex 
has also been observed by Pattenden (7) during measure-
ments with a Be crystal. The contamination of the diffracted 
beam by neutrons of energies different from the expected 
ones may be more pronounced at some angles. More careful 
measurements of the energy spectrum of the diffracted 
beam by a single crystal (when the incident beam is taken 
from a reactor) are desirable since this instrument has been 
widely used for cross-section measurements. 

Thanks are due to Mr. L. S. Kothari for pointing out the 
inelastic scattering effects as a possible cause of the fluc-
tuations and for help in the calculations. Thanks are also 
due to Messrs. Raghavendra Rao and K. Sri Ram for their 
help during measurements. Continued assistance of Messrs. 
J . N. Soni, Virendra Singh, and M. L. Barde is gratefully 
acknowledged. The author is thankful to Dr. R. Ramanna 
for his help throughout the course of this work. 

N O T E ADDED IN P R O O F 

Calculations of the intensity of inelastically scattered 
neutrons were recently made at a few Bragg angles. The con-
tributions of such neutrons at 17°45' and 26° came out to be 
much larger than at neighboring angles, thus causing peaks 
at these angles. The details will be published shortly. 

Similar fluctuations in the case of Be crystal have been 
explained by H. J. Hay, A.E.R.E. Harwell (Private com-
munication, April 1959) as due to double Bragg-reflections. 
Spencer and Smith have also reported similar findings [Bull. 
Am. Phys. Soc. May 1, 1959] in Be and NaCl crystals. 
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Heat Transfer to Water Flowing Parallel to 
Tube Bundles 

A fuel element assembly consisting of cylindrical fuel 
rods cooled by water flowing parallel to the axis of the rods 
is one of the arrangements most frequently encountered by 
the reactor designer. For this situation, the usual procedure 
for calculation of nonboiling heat transfer coefficients in 
the fully turbulent region is to use a modified version of 

Colburn's (1) equation 

where h is the heat transfer coefficient, k the thermal con-
ductivity of the fluid, Cv the specific heat of the fluid, /x 
the liquid viscosity, and De an equivalent diameter equal 
to four times the hydraulic radius. All the fluid properties 
are generally evaluated at the film temperature except 
Cp , which is taken at the bulk temperature. 

The possibility that the effect of tube spacing is not 
adequately described by Eq. (1) has been considered by 
several investigators. Deissler and Taylor (2) studied the 
problem analytically and concluded that at a given 
Reynolds number, based on De , the more open lattices 
should provide higher heat transfer coefficients. Their re-
sults, however, were not presented in a form readily adap-
table to engineering design. 

Heat transfer coefficients on the shell side of unbaffled 
heat exchangers were experimentally investigated some 
years ago by Short (5). The lattice spacing effect he ob-
served could not be described adequately by use of the 
equvalent diameter alone. However, his studies were con-
fined to the flow transition region at Reynolds numbers be-
tween 103 and 104. More recently Wantland (6) investigated 
the heat transfer characteristics of two additional arrays 
in the transition region. The results of this study were also 
at variance with Eq. (1). 

The primary concern of the reactor designer is with the 
fulJy turbulent region at Reynolds numbers above 2.5 X 104. 
Experimental studies of this region with water flowing out-
side of tube bundles have been carried out by Miller et al. 
(4) andDingee et al. (3). For a lattice spacing where the 
ratio of the center to center distance between tubes, S, to 
the tube diameter, D, was 1.46, Miller et al. found the data 
could be described by an equation of the same form as 
Eq. (1), but with a different coefficient. 

The value of C was determined as 0.032. Dinge et al. (3) 
investigated several more closely spaced lattices and found 
that, while the data did not depart greatly from the results 
predicted by Eq. (1), the more open lattice spacings tended 
to give somewhat higher heat transfer coefficients. Both 
investigators took precautions to allow a sufficient down-
stream length of remove entrance effects. 
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The method of least squares has been applied to the data 
available for the fully turbulent region, and the value of 
the coefficient, C, of Eq. (2) determined for each of the 
lattices investigated. As can be seen by the graphical rep-
resentation of the results in Fig. 1, C appears to vary 
linearly with the S/D ratio. At the same S/D values, square 
pitch lattices, which are more open, give higher values of 
C than do the triangular pitch lattices. At Reynolds num-
bers between 2.5 X 104 and 106 we have for triangular pitch 
lattices, where S/D lies between 1.1 and 1.5 

C = 0.026 (S/D) - 0.006 (3) 
and for square pitch lattices, where S/D lies between 1.1 
and 1.3 

C = 0.042 (S/D) - 0.024 (4) 
It is instructive to compare the results for square and 

triangular pitch lattices when plotted as a function of e, 
the ratio of the water flow area to the total cross sectional 
area of an infinite lattice. As can be seen from Fig. 2, both 
lattice types yield essentially the same heat transfer co-
efficients at equivalent values of e. 

It should be noted that for almost all cases of interest, 
Eqs. (3) and (4) yield higher heat transfer coefficients than 
predicted by the Colburn equation. This should be an aid 
to the reactor designer since somewhat lower fluid veloci-
ties can now be used to obtain the high heat transfer co-
efficients desired. 
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The Double Spherical Harmonic Method for 
Cylinders and Spheres 

Several attempts to extend the double spherical har-
monics method of Yvon (1) to cylindrical and spherical 
systems have appeared in the unpublished reactor tech-
nology literature. Different sets of differential equations 
for the same system have been suggested depending on the 
treatment of a product of singular functions which occurs 
in the analysis. 

In this note we would like to point out that when one 
attempts to use the Yvon method for cylinders or spheres, 
one encounters the problem of finding the product Y-8 of 
a Dirac 8 function and a Heaviside step function, F, that 
is, Y(x) = 1 for x > 0, Y(x) = 0 for z < 0. It is well 
known that even if one interprets these functions as distri-
butions in the sense of L. Schwartz (2), the product Y-8 
is not defined. However, it is possible to make use of a 
product of distributions defined by H. Koenig (3) to ob-
tain double spherical harmonics moment equations for the 
cylinder and sphere. The distribution product of Y-8 de-
fined by Koenig involves an arbitrary constant which must 
be determined by physical considerations. The same result, 
still involving an arbitrary constant, can be obtained 
without explicit use of distribution theory. 

The one-velocity transport equation for a system with 
cylindrical symmetry may be written 

sin 0 [cos <f> ^ f(r, 0, </>) - f(r, 0, <f>)] + 2/(r, 0, <j>) 
dr r d<f> 
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(r, cos 0O) f(r, 0'4>') sin 0' + S' (r, 0, <f>) 

J O E L W E I S M A N 

P r e s e n t address: Nuclear Development Corporation, 
White Plains, New York. 

We expand the scattering kernel in ordinary spherical 
harmonics and for simplicity keep only the first term corre-
sponding to isotropic scattering. To expand the flux in the 
double Pi approximation we start with the usual first two 
spherical harmonics required for a symmetrical solution, 
i.e., 1 and sin 0 cos <f>, and construct the corresponding non-
orthogonal set of "double spherical harmonics" 

Fl = (2w)~ll2A, F2 = (2tr)-1/2#, 

Fs = sin 0 cos 4> A, F4 = sin 0 cos (f>B 

where 

A = 1 for — 7r/2 < 0 < 7r/2, 0 otherwise 

B = 1 for tt/2 < <f> < 3x/2, 0 otherwise. 

We can write A and B using Heaviside step functions as 

A = Y_ir/2 — Yw/2 

B = Y*/2 — F3W2 

A corresponding orthogonal set of functions spanning 
the same space is found by the Gramm-Schmidt process 
to be 

F\ , FI , 

F% = (6/7r)1/2^4 (sin 0 cos <f> - i ) 

Fa = (Q/w ) l , 2 B ( s i n 0 COS0 + i ) . 




