
R R + z 
dx (1 + e ) d x 

z = r s i n f l 

= A ( T V or ct/Ayi" (2) 

where A(T) is a func t ion of the t empera tu res . Since the 
t empera tu re , T, is a known func t ion of the radius , A can be 
wr i t t en as a func t ion of the radius, r. 

For a tube of thickness dr and radius r , the moment con-
t r ibu t ion for the cu rva tu re R is 

dM 
» x / 2 

=
 4 j 

Jo 
<r(r sin 6)rd 6 dr (3) 

Subs t i tu t ing for a f rom Eq. (2), for « f rom Eq . (1), and in-
t roducing the approximat ion for the radius of cu rva tu re 
yields the incremental moment equat ion . T h e to ta l moment 
is obta ined by in tegra t ing the incrementa l moment equa-
t ion with respect to the radius, r. The resul t ing moment -
deflection relat ion is 

M(x) 
r " o 

J R . 
dM = B(y")]/", (4) 

where Ri is the inner t ube radius (ft , = 0 for a rod ) ; ft0 , 
t he outer tube radius ; and 

B = 2\/w r ( l + 1/2 n) 
r [ l + (n + l ) /2n] 

rR0 / r\lln 

L w 1 r2 dr. 

T h e func t ion B is independent of the bending condi t ions 
within the rod and is a funct ion of the power dependence of 
t he s t ress-s t ra in relat ions and the radial dependence of the 
mater ia l pa ramete r , A. Thus , for any par t icu la r problem 
B is a cons tan t and Eq. (4) can be in tegra ted to obta in the 
deflections. 

A simply suppor ted beam of length L with a un i form 
load w has the following moment d i s t r ibu t ion , M : 

M = (w/2) (Lx - x2) (5) 

where x = d is tance f rom a suppor t . Solving E q . (4) for 
t he second der iva t ive of the deflection 

y" = (M/B)«. 

Subs t i tu t ing in the moment d is t r ibu t ion (5), in tegra t ing , 
and eva lua t ing bounda ry condi t ions yields: 

(Lt - py dt 

When n is an in teger 

1w\n (L\2"+2 

y I 

x{Lx — x2)" dx. 

1 
(2n + 1)(2n - 1) • • • 3 

2"+1(n + 1) } 
(1 + t ) d x 

FIG. 1. No ta t ion for a circular cross section 

F o r small deflections, the radius of cu rva tu re is re la ted to 
t he deflection of t he neut ra l axis, y, and the axial dimen-
sion, x, by 1/f t = d2y/dx2. Isochronous creep tes t resul ts or 
tensi le t es t results in te r re la t ing stresses, <r, and s t ra ins , e, 
can be described by a power func t ion of the following fo rm: 
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Note on the Thermal Neutron Spectrum in a 
Diffusing Medium1 

A paper by Hurwitz and Nelkin (1) considers the energy-
dependent thermal diffusion equat ion in a region free of 
external sources. Hurwitz and Nelkin consider two similar 
cases: 

(a) The s teady-s ta te diffusion of neutrons f rom a the rmal 
plane source in an infinite medium and 

(b) The t ime-dependence of the thermal flux following a 
pulse of fast neut rons . 

The present au thors have misgivings concerning the basic 
assumption of flux separabi l i ty made in the Hurwitz and 
N e l k i n p a p e r w h i c h t h e y f e e l m a y n o t be correct . I n c a s e (a), 
it is assumed [see Eq. (9) of ref. 1] t h a t <j>(r, E) = fi„(r)-
0„CE). In case (b) [see E q . (13) of ref. 1], the assumed 
<t>(E, r, t) = <fa(E)SlB(T) -e-xi where X is explicitly taken to be 
independent of energy.2 We wish to make the following 
comments : 

Case (a). Consider a s t rong absorbing medium in which 

1 This communicat ion has been presented by one of the 
au thors (G. de Coulon) to the facu l ty of the Univers i ty of 
Michigan, in par t ia l fulfi l lment of the requirements for t he 
degree of Mas te r of Science. 

2 This t r e a tmen t is also followed in a la ter paper by M. 
Nelkin (J. Nuclear Energy 8, 48 (1958)). 



the absorption cross section obeys the l/v law. If the scat-
tering mean free path (taken to be energy-independent) is 
large, the source flux will be a t tenuated primarily by absorp-
tions. Due to the preferential absorption of low energy 
neutrons, the spectrum will become increasingly harder as 
the distance from the source increases, and no equilibrium 
si tuat ion will be reached. 

I t might be argued tha t far enough from the source the 
spectrum will become so hard tha t 2„ will become small, and 
asymptotic equilibrium will be a t ta ined. This raises three 
questions, assuming the above (unproven) argument is 
accepted: 

(1) How far from the source will this equilibrium be 
reached? 

(2) What relation, if any, will the equilibrium spectrum 
have to the spectrum in a reactor with the same value of 
S„/&, ? 

(3) True equilibrium (i.e., separability) is clearly reached 
only in the limit 2„ —> 0, which is a trivial case since the flux 
is constant in position. I t remains to be shown tha t this is a 
stable equilibrium, i.e., t ha t for small 2„ there will be an 
exponential decay characterized by a relaxation length 
given by Eq. (12) in ref. 1. 

Even if questions (1) and (3) are answered satisfactorily 
by the quasi-rigorous physical arguments frequently given, 
question (2) is still unanswered, and of vital importance if 
the diffusion length measured by relaxation of a thermal 
source is to be used in reactor calculations. 

Case (b). Consider a medium of buckling Bcontaining 
a material whose t ransport cross section is energy-inde-
pendent , and whose absorption cross section is small and 
obeys the l/v law. Then, if the material has an infinite mass, 
the flux at any time t will be related to the initial flux by 

4>(E, t) = 4>{E, 0) exp [ -» (S„ + DB*)t] (1) 

and is clearly inseparable in energy and time. If we now al-
low the mass to become finite, but still large, the contention 
is t ha t energy exchange will eventually bring about an 
equilibrium si tuation. Again, this raises questions, assum-
ing this argument is accepted: 

(1) How long after the initial burst will equilibrium be 
reached? 

(2) What relation will there be between the equilibrium 
spectrum and the spectrum in a reactor? 

The problems raised with respect to case (a) could easily 
be answered experimentally by measuring the neutron 
spectrum as a function of distance from the source in a 
large moderating block, perhaps by means of chopper ex-
periments. Case (b) is being investigated theoretically by 
S. Purohit at the University of Michigan, who is solving the 
time-dependent equations without assuming separabil i ty. 

I t seems reasonable tha t the questions raised here should 
be answered in some rigorous fashion before the parameter 
measured either by relaxation or pulsed techniques are used 
in reactor design.3 If separability cannot be established for 
case (b), this fact might well be at least partially responsible 
for the so-called "diffusion-cooling" effect discussed in ref. 
1. Even if separability is established within reasonable time, 
it might well be tha t the equilibrium spectrum differs so 
drastically from the quasi-Maxwellian equilibrium in a 
reactor tha t per turbat ion or variational techniques for ob-
taining the eigenvalues are not sufficiently accurate. Note 
tha t for 2 „ » DB2 separability seems a priori much more 
likely since vSa is constant ; see Eq. (1). However, this 
condition is not fulfilled in pulsed experiments in graphite, 
beryllium, or D 2 0 . 

I t is a pleasure to acknowledge the valuable comments 
received on an earlier version of this letter from H. Hur-
witz, M. Nelkin, B. E . Simmons, E. R. Cohen, and G. von 
Dardel. 
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3 I t should also be noted tha t the problem of "mode-
mixing" due to variat ion of extrapolated boundary with 
energy contributes a great deal of uncerta inty. This is a 
separate problem, how'ever, from those discussed here. 




