
y {S-RC \ 

That being the case, we have 

QP = PA 

where 

(6) 

where we have abbreviated 

S = sin pd; C = cos fid (7) 

T = C + (RS/2) (8) 

with eigenvalues 

Xi = T ± V r 2 - 1. (9) 

(10) 

,'S-RC S-RC \ 
P = [ D a / o 7 DO/O , . ) (11) - \RS/2 - y V - 1 RS/2 + vV -

- ( ? I) 

Equation (21) is understood to be solved for each j , and 
the smallest positive root for k so obtained is the desired 
eigenvalue. 

It is of interest to note that Eq. (21) can be solved ex-
plicitly for the critical spacing 5, in the form 

5crit = COS 
M 

fcos [jW(N + 1)] ± IrVsin2[ix/{N + 1)] + R2/4 

V (22) 
1 + R2/ 4 

which is to be interpreted in a manner similar to Eq. (21). 
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PAP"1. 

QN = pAXp~l 

Thus, 

or, more explicitly 

0N = i f RS /— I S . /— 
^ A 1 ~7T ~~ VT2 - 1 " ^ + V T2 - 1 

(13) 

(14) 

+ V t 2 c r - s] (15) 

RS 
V V - l - y S-RCj 

where 
A = 2 VJ ' 2 - 1 OS - RC). (16) 

By direct calculation from Eqs. (3) and (15), we find the 
surprisingly simple critical equation 

(s'c)Qff (o) = ww^t {Xl'v+1" X2W+m = (17) 

By inspection, one can verify that the only admissible 
solutions of Eq. (17) are those for which 

(XiA2)2V+l = 1. (18) 

If we write T = cos ^ in Eq. (9), and substitute in Eq. (18) 

emN+\)<P = ! (19) 

that is, the critical values of ^ = cos-1 T are 

= j'TT/OV + 1 ) (i = 1, 2, • • • , 2N + 1) (20) 

and the critical equation, from Eqs. (8) and (20), takes the 
simple form 

R . jT 

cos ixS + — sin nS = cos T7-; ~ 2 iV + 1 ( 2 1 ) 

( j = 1 ,2, . . . ,2N+ 1) 

A Simple Treatment for Effective Resonance 

Absorption Cross Sections in Dense Lattices 

It has recently been shown by Chernick et al. (1, 2) that 
effective resonance absorption cross sections can be com-
puted with the same expressions for both homogeneous mix-
tures of absorber and moderator and also for isolated1 

lumps of absorber in moderator. This result was obtained 
by making for the isolated lump case, the so-called Wigner 
or canonical approximation to the neutron escape proba-
bility from a lump. Let S denote lump area, F0 lump volume, 
Vi moderator volume per lump, 2o macroscopic cross sec-
tion in lump, and Si moderator cross section. In this nota-
tion, it was found that the quantity <S/4F0 = s0 plays the 
same role for the heterogeneous case that the moderator 
cross section per absorber atom (SiVi/Vo) plays in the 
homogeneous case. The quantity So was interpreted as a 
pseudo-cross section representing escape from the lump (2). 

For the case of dense lattices with closely spaced lumps, 
it has been customary to apply Dancoff corrections (3) to 
the isolated lump case. This is frequently a quite compli-
cated procedure. It is the purpose of this note to indicate 
how the canonical treatment may be generalized to the 
case of closely spaced lumps and to obtain a transition be-
tween the isolated lump and homogeneous cases. The result 
of such a generalization is very simple; namely, in general 
the quantity s0 is to be replaced (in all isolated lump ex-
pressions) by TO , where 

SoSi 
2! + so (To/70 ' (1) 

In the following, we shall first give a heuristic justification 
of this recipe and then note some of its desirable properties. 

We assume, as usual, that neutrons arrive at any energy 
E uniformly in space within either the absorber lump 

1 By isolated we mean that separation between lumps is 
large compared to a moderator mean free path. 



(subscript 0) or moderator (subscript 1). We wish then to 
compute the probabilities, P,- , that a neutron originating 
uniformly in region i makes its next collision in the same 
region (although possibly after traversing the other region). 
Let Pi0 be the corresponding probabilities for isolated 
lumps, and let ft1' be the probability that a neutron inci-
dent on region i, after j previous traversals of region 
i ( j § 0), makes a collision in region i before leaving. For 
simplicity, we now assume that ft' is independent of j 
and drop the superscript j , but such an assumption is not 
really necessary at this stage. We then find 

1 - Po (1 - P0°)[ft + (1 - ft)(l - G„)ft 

1 - Po = (1 - Po°) ft 
1 - ( 1 - ft)(l - Go)' (2) 

The Wigner or canonical approximation consists in 
setting, as in reference 1 

1 - Po° = s0/(2„ + so) 

1 - G0 = So/(2o + So) 

1 - ft = SI/(2a + SI) 

(3a) 

(3b) 

(3c) 

with Si = S/4Fi = SoVo/Vi . Substituting Eqs. (3) in Eq. (2), 
we find that 

1 - Po TO/(Zo + T0) (4) 

By comparing Eqs. (3a) and (4) we see that, in this general 
case, r0 has replaced s0 of the isolated lump case. A similar 
result may be derived for Pi 

1 - Pi = V t e + n) TI = s120/(2„ + s0). (5) 

Since all effective cross sections may be derived2 in terms 
of P0 and Pi , it follows that general effective cross sections 
will be obtained from isolated lump expressions by replacing 
So by TO . 

In addition to its simplicity, this canonical recipe has a 
number of desirable properties: 

(a) It gives the isolated lump limit when the lumps are 
2 In fact they may be derived from P0 alone if Eq. (7) is 

employed to eliminate Pi . 

widely spaced. This limit is obtained as Si/2i —> 0 (s,- is a 
reciprocal mean chord length in region i), for which we see, 
from Eq. (1), that T0 —> s0 and we have the isolated lump 
case. 

(b) It gives the homogeneous mixture limit when lump 
and moderator regions are thin, i.e., when 2i/si « 1 and 
2 0 / s 0 « 1. In this case we see from Eqs. (1), (4), and (5) that 

P o ~ 
20 

2o + 2i (Fi/Fo) 
~ 1 - A (6) 

+ ••• (1 - ft)"(l - G„)"ft + •••] 

which means that the probability of a neutron colliding with 
an absorber nucleus is simply equal to absorber cross sec-
tion divided by total cross section, and is independent of 
where the neutron originated. Clearly this is just the 
homogeneous case. 

(c) Our expressions satisfy the exact reciprocity relation 

(1 - Po)2oF„ = (1 - Pi)2,Fi (7) 

as is readily verified by substitution and a little algebra. 
Calculations in which s0 is replaced by T0 have been made 

for some practical dense lattices. It is concluded that the 
use of T0 for dense lattices is about as accurate as is the use 
of s0 for isolated lumps. Thus we have not lost appreciable 
accuracy in generalizing the isolated canonical approxi-
mation. 

It is straightforward to generalize the above results 
further to allow for the presence of moderator in the ab-
sorbing lumps or to treat cells which have a central cluster 
of absorber lumps plus moderator. The interpretation of T0 
as a generalized leakage pseudo-cross section may be main-
tained throughout. 
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