REFERENCES

1. G. S. HURST ET AL., Rev. Sci. Insts. 27, 153 (1956).

2. J. S. HANDLOSER AND N. DELIHAS, BNL 386 (T-72) (1955).

3. H. J. CURTIS ET AL., Nucleonics 147, No. 2, 26 (1956).

4. D. J. HUGHES AND J. A. HARVEY, BNL-325 (1955).

5. B. E. WATT, Phys. Rev. 87, 1037 (1952).

U.S. Naval Research Laboratory Reactors Branch Washington 25, D.C. Received March 3, 1958

¹ Present address: Nuclear Power Engineering Department, General Motors Corporation, Detroit, Michigan.

Equivalence Factors for D_2O^1

In reference (1), R. W. Deutsch presented a table of equivalence factors for a variety of materials with respect to H₂O. These factors have the property that if material x has the equivalence factors α , β , then the age in a mixture of H₂O and x is:

$$\tau_{\rm mix} = \frac{\tau_{\rm H_2O}}{v_{\rm H_2O}^2} \frac{1}{[1 + (\alpha v(x)/v_{\rm H_2O})]} \frac{1}{[1 + (\beta v(x)/v_{\rm H_2O})]}.$$

Also

$$D_{\rm mix} = \frac{D_{\rm H_{2O}}}{v_{\rm H_{2O}}} \frac{1}{[1 + (\beta v(x)/v_{\rm H_{2O}})]}$$

where v(x), $v(H_2O)$ are the volume fractions of the elements of the mixture and D is the diffusion coefficient.

	TABLE I D ₂ O Constants	
Group	$ au(ext{cm}^2)$	D(cm)
Ι	48	1.27
II	79	1.24

We have calculated equivalence factors with respect to D_2O for Mg, Al, Zr, and stainless steel (SS). These equivalence factors are given for two groups. Group I covers neutron energies from 10 Mev to 180 kev, Group II from 180 kev to 1.4 ev. The D_2O constants for these groups are given in Table I, the equivalence factors in Table II.

To collapse the two groups to one, the age is the sum of the two ages. Denoting the con-

F. E. JABLONSKI¹ AND A. F. DIMEGLIO

¹ Work performed under auspices of the U.S. Atomic Energy Commission.

Material	Group	α	β
Mg	I	0.06668	0.48005
	II	0.05690	0.44468
Al	Ι	0.05785	0.47881
	II	0.02131	0.17223
Zr	Ι	0.03299	1.10895
	II	0.02837	0.79863
SS	I	0.02767	0.47270
	II	0.05106	0.88713

TABLE II Equivalence Factors

stants of the combined group by the subscript f_{i} ,

$$\tau_{f} = \tau_{I} + \tau_{II}$$

 $\Sigma_{f}^{-1} = \Sigma_{I}^{-1} + \Sigma_{II}^{-1}; \qquad \Sigma_{I} = D_{I}/\tau_{I}, \text{ etc.}$

The latter prescription preserves the slowing-down density.

REFERENCE

1. R. W. DEUTSCH, Nucleonics 15, No. 1, 47-51 (1957).

Reactor Engineering Division Argonne National Laboratory Lemont, Illinois Received February 17, 1958 CHARLES KELBER