
Letters to the Editor 

On "Simultaneous Estimation of Neutron Density 
and Reactivity in a Nuclear Reactor Using 

a Bank of Kalman Filters" 

In a recent technical note, C. E. D'Attellis and E. Cortina 
proposed a method to estimate reactivity as well as neutron den-
sity via a bank of Kalman filters.1 The procedure is based on 
Magill's method of calculating unknown parameters of stochas-
tic processes. The adaptation of Magill's method to the case of 
reactivity estimation is a very attractive idea as the whole pro-
cedure seems to be quite easy and straightforward at first sight. 
However, every one of our attempts to reconstruct D'Attellis 
and Cortina's results has failed in spite of the persuasive results 
of the authors. Therefore, in this letter, the whole theory is care-
fully reviewed, and hidden difficulties are revealed. In addition, 
a possible explanation of why D'Attellis and Cortina's idea 
seemed to work is also presented. 

The work in Ref. 1 is based on the following assumptions: 
1. The dynamic model contains the point kinetic equations, 

without a dynamic noise term: 

0 - S f t , 0) < i=i i=i 
and 

c,V) = y n(t)-\,Ci, , / = 1 6 , (2) 

where 
n(t) = neutron density 
c(t) = precursor concentration 

p = reactivity 
(8, = delayed neutron fraction 
/ = neutron generation time 

X, = decay constant of the precursors. 
2. The scalar measurement model is the noise-corrupted ob-

servation of the neutron density: 
z(t) ~ n(t) + v(t) , (3) 

where 
z(t) = signal 
v(t) = measurement noise. 

Afterward, the continuous-time model is discretized. 
3. A discrete linear Kalman filter is applied for estimating 

the state vector. 

4. A bank of Kalman filters is used to determine the best ap-
proximation of the reactivity applying the Magill-Bogler deci-
sion rule. 

The authors did not give the details of the Kalman filtering 
technique; they just cited the literature. So do we. Although it 
is a known and well-established tool for state estimation prob-
lems, some remarks must be made here. In general, only minor 
attention is paid to the investigation of the possible divergence 
problems of the filtering. Here divergence means an unbounded 
estimation error. Normally, divergence does not occur very of-
ten, only in extreme situations. However, the divergence does 
play an important role in the method just treated. The main 
problems are the following. In general, neither the system mod-
els nor the initial data x0 and P0,o are known exactly. There-
fore, the model used in constructing the filter can differ from 
the physical system that generates the measurable signals. How-
ever, an inaccurate filter model does degrade the filter perfor-
mance and could make the filter diverge. Inaccurate initial data 
Xo and P0,o c a n lead to similar effects as well. Fortunately, there 
are theorems that guarantee that a wide class of systems can be 
estimated reliably by Kalman filters without a real risk of diver-
gence.2,3 However, the Kalman gain Kk has the following 
property2,3: 

Qk-+0 => Kk-*0 , 

where Qk is the variance of the dynamic noise. As a conse-
quence, the lack of dynamic noise makes the filter unable to 
compensate for the fatal effect of inaccurate parameters and ini-
tial data. Unless every element of the system model as well as 
the initial data is precise, the estimate of the state vector must 
diverge. Schlee, Standish, and Toda4 presented a simple ana-
lytic example to show how the estimation error becomes un-
bounded if a nonzero-valued control term is ignored in the 
noise-free dynamic model. At the same time, it was proven4 

that the estimation errors can be made bounded by adding 
noises to the dynamic model. Although introduction of in-
creased noise can improve the stability of the estimation proce-
dure, it could degrade the performance of the filter. Therefore, 
the optimal choice of the value of Qk usually means certain com-
promise. Detailed analysis of the divergence problems can be 
found in Ref. 2. 

Now let us consider Eq. (1) again. It is the noise-free dy-
namic model describing the neutron economy. According to the 
properties listed earlier, the Kalman filter applied to this system 
must be very sensitive to the parameters p, ft, /, and A,. Unless 
they are exactly known and a precise guess about the initial data 
n(0) and P0 can be found, the estimation procedure could be-
come divergent. The values of ft, I, and A, can be known reli-
ably. However, the reactivity p is to be determined. In order to 
do it, a set of trial values of reactivity (p' )/ii is chosen. After-
ward, every element p' of the set is substituted into the dynamic 
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model, Eq. (1), and a Kalman filter is formed using this partic-
ular model (Magill-Bogler method5,6). Therefore, in each filter, 
the applied reactivity p' as well as the system model must dif-
fer from the real physical system. The main constraints of this 
parameter estimation technique are the following: 

1. It can estimate unknown parameters present only in the 
control term. 

2. No divergence is allowed during the estimation pro-
cedure. 

Usually, the first item is acknowledged, and the second one 
is ignored. The neglect of the second term could be understood 
from the tacit assumption that only an estimation is used that 
does not diverge. Consequently, it is usually believed that no in-
herent divergence occurs. However, it is not trivial and should 
be checked. 

Unfortunately, D'Attellis and Cortina's method does not 
comply with either of these constraints. In fact, the method is 
meant to estimate an unknown parameter of the state-transition 
matrix 0*+!,* and not of the control term Bkuk, using the 
Magill-Bogler procedure. The procedure may be correct, but it 
should be proven. The second problem arises from the filter di-
vergence. The supposed noise-free dynamic model [see Eqs. (1) 
and (2)] makes the Kalman filter very sensitive to the uncertain-
ties in the system parameters as well as in the initial conditions. 
To illustrate the role of the dynamic noise, some results of dif-
ferent computational simulation runs are presented. To this ef-
fect, the measurement data are processed by four different 
Kalman filters. For the sake of simplicity, a one-precursor-group 
model is used instead of the general, six-precursor-group model. 
The filters are different in the following two aspects: (a) the ap-

plied reactivity in the filter equations and (b) the presence or ab-
sence of a dynamic noise. The reactivity values were set to 

p = 0.0023 and p = 0.0027 . 
The other parameters are as follows: 0 = 6.4 x 10~3, / = 9.5 x 
10~4 s, and X = 8 x 10~2 s"1. The sampling interval is chosen 
to be dt- 0.1 s. The results are shown in Fig. 1. It can be seen 
that a dynamic noise term does stabilize the Kalman filter. 

As a conclusion, even if the Magill-Bogler procedure could 
have been applied without changes for estimating the parameters 
of the state-transition matrix, the procedure must have failed be-
cause of the filter divergence. Since the Magill-Bogler procedure 
uses a finite set of trial values, some best approximation will al-
ways be obtained. Therefore, the reliability of the approxima-
tion must be checked by other means. It can be shown7 that the 
score statistic of the true control parameter has a %N distribu-
tion, where AT is the sampling number. Therefore, the value of 
£'(N) corresponding to the best approximation p' is a realiza-
tion of a random variable with the distribution function XN-
Therefore, £,'(N) takes its values from the vicinity of N. Let us 
apply these results to the values of Table I in Ref. 1. The min-
imal value of £ is 30.30, corresponding to the best approxima-
tion of the reactivity. However, the sampling number was N = 
50; therefore, £(N) should have been around 50. Certainly, a 
realization of £(N) might take the value of 30.30, but it has a 
very low probability (see Ref. 7 for details). In general, a very 
rough trial set could also produce such an effect. However, the 
applied resolution was Ap/p - 0.06, which was dense enough. 
Therefore, the contradiction must be the result of the filter di-
vergence, probably caused by omitting the dynamic noise. 

Now we are in a position to give some explanation of why 
D'Attellis and Cortina's results were seemingly so excellent. 
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Fig. 1. The innovations: (a) p = 0.0023 and (b) p = 0.0027 without dynamic noise and (c) p = 0.0023 and (d) p = 0.0027 with dynamic noise. 



Since the authors did not give any technical details about their 
calculation, our explanation is not more than a guess; we may 
be totally wrong. 

There are two questions to answer: 
1. How could the estimated reactivity be so close to the true 

value? 
2. Why does the minimal value of the score statistics differ 

seriously from the theoretically prescribed one? 
Guess 1: The processed time series was very short (N = 50); 

thus, no serious divergence was able to develop during this time 
(see Fig. 1). In addition, the score statistic is constructed using 
the square of the innovation; thus, every divergence does in-
crease the score statistic. Therefore, the smaller the divergence 
is, the smaller the score statistic is. The amount of the diver-
gence depends on the goodness of the approximation. As a con-
sequence, the better the approximation is, the smaller the score 
statistic is. 

Guess 2: It has been mentioned that £(N) could take such 
a value, which is far from its expected value, but this event has 
a very low probability. Therefore, in such a case, the whole cal-
culation should be repeated again to check the reliability of the 
estimation. Reference 1 has not mentioned it. Finally, if the au-
thors applied a noise-corrupted dynamic model with the score 
statistics given by Eq. (4), the whole problem disappears. In this 
case, Ref. 1 has only forgotten to mention this fact. 

We pointed out that the application of the Magill-Bogler 
procedure in Ref. 1 is improper in the sense that the unknown 
parameter appears in the state transition matrix <D instead of the 
control term. This invalid interpretation of the Magill-Bogler 
method could also be responsible for the whole anomalous effect. 
It would deserve a detailed analysis to see how the Magill-Bogler 
technique has to be modified to be able to handle unknown pa-
rameters in the state transition matrix, too. 

Inspired by D'Attellis and Cortina's idea, another procedure 
is developed to estimate unknown reactivities.8,9 Supposing 
small changes in the reactivity, the effect can be described by the 
appearance of an extra input term in the point kinetic equations. 
The unknown reactivity shift becomes an unknown control pa-
rameter suitable for the "bank of Kalman filters" procedure. 

Attila Racz 
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Applied Reactor Physics Department 
Bp. 114, P.O. Box 49 
H-1525 Budapest, Hungary 
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Reply to "On 'Simultaneous Estimation of 
Neutron Density and Reactivity in a Nuclear 
Reactor Using a Bank of Kalman Filters'" 

1. The efficiency of the proposed method was checked in a 
simulator that matches the reactor behavior. The robustness 
analysis was not within the scope of our technical note. 

2. Qk~+ 0 is a sufficient condition for Kk -» 0, but it is not 
necessary. It is very easy to construct simple examples without 
a dynamic noise term that verifies Kk 0 for all P{0). 

3. The aim of our method is to obtain a good estimation in 
a short time interval (N = 50 in the example). If the estimation 
time were longer, the estimation itself would not be useful. Di-
vergencies could appear only in a long-duration Kalman filter 
operation. 

4. Magill proposed a method for estimating a stochastic 
process with certain unknown parameters. According to Magill's 
method, the most likely filter is the filter that maximizes the 
(maximum a posteriori) probability p(a\Zk,Zk-\, • • •, ZQ) con-
ditioned to measurement data. This is equivalent to selecting 
from the L hypothesized filters the filter that minimizes a sum 
of weighted innovations. Bogler estimates the acceleration of a 
maneuvering target, and the acceleration is the control variable 
in his model. But the important fact from Magill's analysis is the 
possibility of making estimations based on calculations involv-
ing the innovations. This general principle can be applied to dif-
ferent problems, even when the unknown parameters appear 
in the state transition matrix. We have successfully used this 
method in other fields such as acoustic emission signal analy-
sis1 and failure detection in a heat exchanger.2 

Carlos E. D'Attellis 
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