
Letters to the Editor 

Time-Dependent Escape Probabilities and 
Chord Distribution Functions 

In a recent paper, Henderson and Maynard1 pointed out 
that time-dependent first-flight neutron leakage rates can be cal-
culated from their steady-state counterparts by using Laplace 
transform techniques. This is possible because the transformed 
time-dependent Boltzmann equation is formally identical to the 
steady-state equation with a modified total cross section. 

Henderson and Maynard did not investigate the relevance 
of chord theory in their paper. It is, however, easy to obtain a 
simple, general expression for the time-dependent first-flight 
escape probability in terms of the chord distribution function. 

Consider a homogeneous body B. (For simplicity, only con-
vex bodies will be considered.) Let f(R) denote the chord dis-
tribution function of body B, and let (R) denote the mean 
chord length. Then, as originally shown by Dirac,2 the prob-
ability that a neutron born uniformly and isotropically in body 
B will escape on its first flight is given by 

Pe(L) = (1/2:<*» f " [ l -exp(-ZR))f(R)dR . (1) 
Jo 

It is convenient to introduce a dimensionless length 

x = R/(R> (2) 

and a corresponding distribution function 

g(x)dx=f(R)dR . (3) 
Then, 

J» oo 

[1-exp(-E</?>jr)]g(*)d* . (4) o 
Let P(t) denote the corresponding probability that a neutron 
born uniformly and isotropically in body B at time t = 0 escapes 
on its first flight during a unit time at t. Let P(s) denote the 
Laplace transform of P(t). Then, as shown by Henderson and 
Maynard,1 P(s) can be obtained from Pe(L) by replacing E 
with E + s/v, where v denotes the neutron speed. When applied 
to Eq. (4), this approach gives 

P(s) = (v/<R» 
x f " [ l - e x p [ - ( E , + , ) « ^ > ^ ) ] ) ( ; c ) d x 
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The inverse transform of Eq. (5) is elementary and yields 
00 

P(t) = (v/(R))exp(-Lvt) J g(x) dx . (6) 
vt/(R) 

Thus, P(t) can be obtained by integrating the dimensionless 
chord distribution function g(x). Note that P(i) factors neatly 
into a product. The first factor gives the initial leakage rate 

P ( 0 ) = v/(R) . (7) 

This is seen to depend only on </?> and not on the detailed 
shape of B. The second factor, exp(—Evt), is the familiar prob-
ability that the neutron avoids colliding with nuclei for at least 
the specified time t. The third (integral) factor, a function of 
vt/(R), represents the fraction of the chords in the original dis-
tribution f(R) whose length exceeds vt. Clearly, shorter chords 
are irrelevant at time t, since neutrons exiting along them must 
do so prior to t. 

Chord distribution functions are known for several elemen-
tary geometries.2 For the slab and solid sphere, the corre-
sponding integrals required in Eq. (6) are trivial and reproduce 
the results given in Ref. 1. For a solid infinitely long circular 
cylinder, the integral in Eq. (6) can also be done in closed form. 
The resulting expression and numerical values of P(t) will be 
reported separately.3 

With suitable modifications, the above theory may also be 
applicable to bodies containing cavities or black absorbers. In 
certain cases, Eq. (6) may provide a more tractable calculation 
of P(t) than does the direct Laplace inversion of Pe(E + s/v). 

Alan G. Gibbs 

1920 Mahan 
Richland, Washington 99352 

December 7, 1987 
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Response to "Time-Dependent Escape 
Probabilities and Chord 
Distribution Functions" 

In his Letter to the Editor, Gibbs1 obtains a general 
expression for the time-dependent first-flight escape probabil-
ity in terms of the chord distribution function. As he points out, 
the calculations via the chord distribution function do indeed 
provide an alternative method for obtaining the time-dependent 
escape probabilities (a method that we did not investigate) and 
may be a more suitable method for the simple uniform source 
cases considered in Ref. 2. We thank him for bringing this to 
our attention. 

Nevertheless, there are two points in his presentation that 
require clarification. First, the limits of integration of the chord 
distribution function integral are not necessarily from 0 to oo 
but are over the minimum and maximum chord lengths in the 
body. Hence, in Eq. (1) of his letter, the limits of integration 
should be Rmin to Rmax, and in Eqs. (2) through (5) the limits 
are Xmi„ to Xmax. Second, we note that Eq. (6) does not con-
tain any step functions even though the solutions given in Ref. 2 
contain them. To clarify this, we write his Eq. (5) as 

P(s) " J Xmax 

Xtnin 

1 -exp[-(Lv + s)((R)x/v)] 
Zv + s 

The inverse transform of the above equation is 

g(x)dx . 

(1) 

P(t) = v-txp(-hvt) 
* Xmax 

X J" 
Jx. 

H { T ) - H [ T - M g(x)dx . (2) 

Expanding the solution in Eq. (2) yields 
.x, 

P(t) = i>-exp(-I)vt) ( ^ g(x)dxH(t) 
Jxm,„ 

Xmax , 

vt/{R> 
Xm 

+ J g W d x H i t - W f * 
vt/(R) 

(3) 
where 

Xmin ~ 
Rmin <R> and X„ R„ 

<R> 

From the expression given in Eq. (3), we do note the impor-
tance of the integration limits and their appearance in the argu-
ments of the step function. The step functions relate the time 
t to characteristic lengths (chords) of the body under consider-
ation. Using Eq. (3), the slab and solid sphere uniform source 
solutions in Ref. 2 are easily reproduced. 

D. L. Henderson 
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