
Letters to the Editor 

Comments on The Concept of Multiple-Input Zero Power 

Describing Functions in Nuclear Reactors 

A paper recently published by Akcasu and Bost1 claims 
to clarify the discrepancies between the different defini-
tions of the describing function of a nuclear reactor. The 
paper, however, seems to confuse the issue rather than to 
clarify it. With reference to both analytical and experi-
mental determination of a nuclear reactor describing 
function, it had to be stated clearly whether there were 
major e r rors , as indicated2 in 1967, or not. It is evident. 
that functions with major differences cannot all be called 
the describing functions of a nuclear reactor or of any 
other device. It has to be noted that the definition of the 
describing function can by no means contradict the linear 
theory. The following example is expected to clarify, if it 
is not yet clear, which one of the functions so far obtained 
is the "correc t" describing function of a nuclear reactor. 

A linear device with the transfer function 

G(s) = 
s(l +s) 

will be considered. Since the device is linear there will 
not be any difference between its frequency-response 
transfer function G(jw) and its describing function D(ju). 
Therefore 

1 
jw) 

The response of such a device to a sinusoidal input in the 
form k sin wt, in the steady state, is 

1 k + k j w(l + jw) sin (uit + 0) 

where 

co = Arg jCt! (1 + jo>) 
The gain of the describing function, as seen, can be ob-
tained by dividing the amplitude of the sinusoidal component 
by k, which is the amplitude of the input. This is the "cor-
rec t " gain. The amplitude of the output sinusoid divided by 
the d.c. component is 

jo>( 1 +jo>) 
If this ratio is now divided by k the resulting function, 
which is 

1 + jo) 
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has nothing to do with the gain. Therefore, if it is claimed 
that the function 

« x I 
k j(i)( 1 + ju>) 

is the describing function, the best counter comment would 
be to state that it is the "incorrect" describing function. 
It can neither be called the "convenient" describing func-
tion nor the "suitable" one. It is not even the "useful" 
describing function. 

It seems also worthwhile to mention that in performing 
the sinusoidal test for a linear device, whose transfer 
function has a pole at zero, a d.c. bias may be used in the 
input in order to compensate the d.c. shift in the output. 
Naturally, if desired, the test can be performed at any 
constant d.c. level of the output. Because of the linear 
property of the device, the principle of superposition is 
valid. Therefore, the d.c. level of the output never affects 
the sinusoidal component. 

The situation is, however, completely different in the 
case of a nonlinear device. If a purely sinusoidal input 
produces a d.c. shift in the output, as in the case of a low-
power nuclear reactor, and if the d.c. level of the output is 
changed by using a d.c. bias, then the magnitude of output 
oscillations vary accordingly. The frequency data obtained 
this way will not all be on the same frequency characteris-
tic. Therefore, as recommended,2 f irst the power of the 
reactor must be carefully adjusted, then the sinusoidal 
reactivity input together with a d.c. bias, which is only 
sufficient to stabilize the output oscillations, is to be 
applied. The d.c. shift in the output must be recorded too, 
for each magnitude of the sinusoidal reactivity component, 
as a function of frequency, in order to obtain the dual-input 
describing function.3 It is already shown that4 without 
using the d.c. component, the oscillation analysis of a 
nuclear reactor system by using the describing function 
technique is not possible. 

It is very interesting to note that although Ref. 1 has 
been written in a manner as if there was no error made in 
the past, every effort has been spent to correct it such that 
it would not affect the oscillation analysis. For example, 
Eq. (47) of Ref. 1 is 

1 - Pav(co, |*i|2)ff(ia>)£>z(*i,*2,w) = 0 . (1) 

This equation will now be compared with 

1 +D(jo})H(P) = 0 , (2) 
which denotes a necessary condition for self-oscillations 
to start in a simple negative-feedback system. Naturally, 
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in writing Eq. (2) it is assumed that the describing function 
technique is applicable. D(jw) is the describing function of 
the nonlinear block; H(jw) represents the frequency-re-
sponse transfer function of the feedback block which is 
assumed to be linear. As seen, if Dz is claimed to be the 
describing function the major difference between Eq. (1) 
and Eq. (2) is that Eq. (1) consists of a third function which 
is Pav(w, Uil2). The existence of such a function in the 
balance equation is not consistent with the describing func-
tion technique. Therefore, it would be more reasonable to 
admit the error and call PavDz the describing function in-
stead of trying to alter the theory to cope with an incorrect 
function. 

It is also to be noted that in the low frequency region 
the argument of the function Dz is completely different 
from the argument of the transfer function (Fig. 3, Ref. 1). 
The describing function obtained by the W/TJ3-method,2 

however, reveals that there is not an appreciable difference 
between the argument of the describing function and the 
argument of the transfer function. For these inconsistent 
results, the procedure used in the determination of Dz has 
to be blamed. The results in this procedure have been 
obtained by assuming a form for the amplitude-series in 
the complex Fourier expansion of power. The validity of 
such an assumption, however, is not known. Without having 
a convergence problem, the amplitudes in the series 
expansion of the logarithm of flux have already been ob-
tained by the WKB-method (Eq. 16, Ref. 2). It is seen 
that, even with very small reactivity magnitudes if the 
frequency is also very small, in the logarithm of flux, 
large perturbations occur. In such a case it is hard to 
expect a correct result by determining only one or two 
terms of a series whose convergence is not known. There-
fore, before calculating the magnitude and phase of Dz as a 
function of frequency, for 5k = 0.5 dollar, it was necessary 
for Akcasu et al.1 to prove the convergence of the series. 
Under the conditions it seems that it was a waste of time to 
try to investigate the effects of the second and higher har-
monics of reactivity upon the fundamental of the power 
oscillations, by using the same approach. Besides, this 
approach does not yield the function P a v (w, Ui |2). There-
fore, neither the over-all describing function of the feed-
back system shown in Fig. 1, Ref. 1, can be determined 
nor the oscillation analysis of the same system can be 
performed. The function P a v Dz which identifies the non-
linear block must be completely determined initially. 

At this stage it seems worthwhile to mention that the 
feedback system which consists of two noninteracting 
blocks, one being the low-power nuclear reactor, the other 
being an external feedback block can not be called the 
power reactor. This fact will be explained as follows. 
Assume a power reactor is represented by the following 
equations: 

dn p - P . ^ 

dC P „ > r 
jf = T* c ' 

(3) 

(4) 

P = Pex ' Pj , (5) 
pf = K(n - wo) . ( 6 ) 

Here, if is a positive constant. pex is the external com-
ponent of reactivity and n0 represents the equilibrium 
power or the equilibrium neutron density. From these 
four equations the neutron density n may be obtained as a 
function of pex. Assume this relationship to be 

n= flifiex) • (7) 

Now, if Eqs. (5) and (6) are ignored, from Eqs. (3) and (4) 
the relationship 

n = fz(p) (8) 

will be obtained. This, evidently, describes the dynamic 
behavior of a low-power nuclear reactor as a function of 
p which is the external reactivity. Equations (3) and (4) 
represent a linear system. Because of this reason the 
describing function of a low-power nuclear reactor has 
been determined first.2 It would, naturally, be very con-
venient if it were possible to obtain the describing function 
of a power reactor, using the describing function of a low-
power reactor, the equation p = pex - pj and the linear 
relationship between Pf and n. It must be observed, how-
ever, that, if p is substituted by pex - Pf in Eq. (8), which 
describes the dynamic behavior of a low-power nuclear 
reactor, the equation 

n = fz(pex - Pf) 
is obtained. This is, evidently, not equivalent to 

n = fdPex) 
which is the equation of the power reactor, except for very 
specific cases. 

The substitution of p by pex - p / corresponds to the 
assumption that the power reactor can be represented by 
the block diagram shown in Fig. 1. Then such an assump-
tion is not valid. 

If the feedback system shown in Fig. 1 is in a control 
circuit, as Fig. 2 indicates, without using its over-all 
describing function the oscillation analysis can be made, 
because, in this case, instead of the two linear blocks, one 
equivalent feedback block can be defined. That is, every-
thing would be relatively simple if a low-power nuclear 
reactor with external feedback were representing a power 
reactor. 

As far as the search of limit-cycle as explained in 

Fig. 1. A low-power nuclear reactor with external feedback. 
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Fig. 2. A low-power nuclear reactor with external feedback in 
a different control circuit. 



Ref. 1 is concerned the following comments seem to be 
necessary. 

On page 114 of Ref. 1 the statement stands: "One may 
also keep k0 constant and allow Pav to vary according to 
Eq. (42). Since the magnitude and frequency of self-sus-
tained oscillations are not subject to our control we must 
adopt this mode of operation in our stability analysis." 

It should be reminded once more that there is no alter-
native, if the describing function technique is going to be 
used it is essential to assume that the initial power of the 
reactor is adjusted to a constant value. This corresponds 
to the assumption k0 = constant, in Ref. 1. In this case 
Pav is a function of both magnitude and frequency of reac-
tivity oscillations. It is, naturally, inherent in the state-
ment self-oscillations (self-oscillations may be sustained 
or not) that the system can not have any varying input. 

The analysis of the existence of a limit-cycle by the 
describing function technique is simply to check whether 
all the balance equations are satisfied for a certain mag-
nitude and frequency of reactivity oscillations. Naturally, 
in the equations, all the functions must be known. 

Equations (42) and (47) of Ref. 1 are respectively 
k0 + H( 0) •Pav = -2|*il2 Re Zi 

and 

1 - Pav (W, Uil2) H(iw) Dz(xi, X2, w) = 0 . 
There is also the relationship 

P o " I MO) | 
which shows that, finally, t h e necessary assumption, 
Po = constant, has been made. The function P a v , evidently, 
affects the results derived from the balance equations as 
well as the function Dz, Any numeric result obtained or 
any statement made concerning the limit-cycle, in Ref. 1, 
is not acceptable because the function Pav is not known. If 
it is claimed that for a certain frequency and amplitude of 
reactivity oscillations there is a positive value of P a v 
which satisfies the equations, it has to be shown that the 
function Pav at oscillation frequency and amplitude assumes 
this value. 

It seems also necessary to mention that the plot of the 
function 

Pav (w, x2) H{ id) Dz (xi, X2, d) 
can not be called the Nyquist plot. Nyquist plot and Nyquist 
criterion concern only linear systems. While the Nyquist 
criterion relates the frequency domain behavior of a linear 
system to its time domain behavior, the describing function 
technique shows only the possibility of self-oscillations in 
the system. The results of such an analysis can not be 
used to derive conclusions concerning the general time-
dependent behavior of a nonlinear system. Therefore, the 
statements: oscillation analysis by the describing function 
technique and the stability analysis by using the Nyquist 
criterion, can never be used interchangeably if the system 
is nonlinear. 

The stability of the limit-cycle is a property mainly 
determined by the type of the describing function, not by 
the type of the equilibrium. If an unstable limit-cycle is 
perturbed inward or outward the trajectory of the perturbed 
motion moves away from the limit-cycle. A stable limit-
cycle persists after any sufficiently small perturbation. 
But there is still a third category of the limit-cycle which 
is the semi-stable limit-cycle. Such a limit-cycle persists 
if perturbation is in one direction; for perturbations in the 
other direction the trajectory of the perturbed motion 

moves away from the limit-cycle. If equilibrium is stable 
and if the closest limit-cycle to the equilibrium is per-
turbed inward the trajectory of the perturbed motion 
reaches the origin, but this does not show that the limit-
cycle is an unstable one. It can be a semi-stable limit-
cycle. Besides the same system may have another stable 
limit-cycle outside the semi-stable one. A similar argu-
ment shows that the limit-cycle around an unstable equi-
librium is not necessarily a stable one. 

The dual-input describing function concept with respect 
to a nuclear reactor system has been discussed in Ref. 4. 
It is essential for the dual-input describing function to have 
two components. In the case of a low-power nuclear re-
actor, one component is defined to be used in the balance 
of the d.c. reactivity components, the other is defined to 
check the balance of the first-harmonic reactivity oscil-
lations . 

It has also to be noted that the purpose of defining a 
dual-input describing function for a low-power nuclear 
reactor has never been to increase the accuracy of the 
oscillation analysis. As stated in Ref. 4, the analysis is 
not possible by using only the first-harmonic describing 
function. To increase the accuracy of the analysis, balance 
of the second-harmonic reactivity oscillations may be 
taken into account, if a triple-input describing function of 
the low-power nuclear reactor is available. In this case 
the analysis becomes more complicated because of the 
increased number of balance equations. It is easy to 
realize that the technique loses all its practical signifi-
cance when the number of components of the describing 
function is increased further. 

Since the number of inputs of the describing function, 
regardless of how many, has to be finite, the nonlinear 
block must be followed by a low-pass filter for the analysis 
to be valid. Only in this case the error caused by the 
higher harmonics, the balance of which are not taken into 
consideration, can be negligible. Therefore, the idea in 
the statement by Akcasu et al.,1 "We have presented a new 
concept in describing function analysis which no longer 
places the low pass filter restriction on the feedback in a 
reactor system," contradicts the well known describing 
function theory. 

Sevim Tan 
Nergis Sok. 15/17 
Farabi, Cankaya 
Ankara, Turkey 

June 20, 1972 

Reply to "Comments on The Concept of 
Multiple-Input Zero Power Describing 

Functions in Nuclear Reactors" 

These remarks are directed to the preceding Letter by 
Tan.1 

A. On the definition of describing function which is the 
real issue under discussion: 

1. The question is whether we should define the de-
scribing function (a) with respect to the initial power P0 
(Tan's point of view) or (b) with respect to the average 
power, Pav, in the presence of periodic solution (the 
challenged definition). Denoting these two describing func-

1S. TAN, Nucl. Sci. Eng.,|49, 405 (1972). 




