
Letters to the Editor 

Comments on Variation Flux Synthesis Methods 
for Multigroup Diffusion Theory 

Stacey1 has made some erroneous remarks concerning 
my work on Lagrange multiplier functionals. The remark 
that the Lagrange multiplier functional does not remove the 
overdetermination difficulty is false, as I shall show. 
Moreover, he states that the second order Lagrange multi-
plier functional is equivalent to the functional which he 
calls F12 - Fi + F2. The two principles are not equivalent 
f rom the viewpoint of generating variational approxima-
tions to the neutron diffusion equation. 

For the convenience of the reader, I shall review briefly 
some of the work given in the report2 on the application of 
the Lagrange multiplier principles to axial synthesis. 
There is a summary of this work in Ref. 3. Moreover, the 
Lagrange multiplier functionals are discussed in Ref. 4, 
and applied there to the problem of interface conditions for 
few group equations with flux-adjoint weighted constants. 
The functionals discussed in Ref. 4 are for the continuous 
energy P -1 equations instead of the few-group diffusion 
equations but the differences are minor. Both f i rs t and 
second order Lagrange multiplier functionals are presented 
in Ref. 4. 

Consider the functional 

F(u,u*,a,0) = Fv{u,u*) +Fs(u,u*, a,® , (1) 

where 

Fv(u,u*) = £ F {VU*t-DVU + U*t(A - X'1M)u}dr (2) 
k J,Rk 

and 

Fs = fs{aT(r)[u(+)-u(-)]+[u*(+)-u*(-)]Tp(r)} dS . (3) 

Here D, A, and M are G x G matrices and u, u*, a, and 0 
are G x 1 column matrices. (Note that Stacey incorrectly 
wrote the Lagrange multipliers a and /3 as vectors in x, y, 
and z space). Here u and u* are continuous within every 
Rk and vanish on the outer boundary of the reactor; 
S represents the totality of all interfaces across which u or 
u* is discontinuous. When F is made stationary with 
respect to independent variation of all its argument func-
tions u, u*, a, and /3, one obtains as Euler equations 

-V • D Vw + (A - X'^M) u = 0 in every Rh , (4) 

and on S 

«(+) - m(-) = 0 (5) 
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D Vw(-) • N - i3=0, D Vm(+) • N - (3 = 0 (6) 

as well as analogous conditions on u* and a which may be 
obtained from Eqs. (4), (5), and (6) by replacing D, A, and 
M by their adjoints D*, A*, M*, and by replacing u and p 
by u* and a. [Strictly speaking, Eq. (4) holds only within 
every subregion of Rk in which Vw, Vu*, and D are con-
tinuous, and the usual current continuity conditions hold 
across any interface internal to Rk, since u and u* are 
continuous within each 

To use the functional F to obtain an approximate solution 
to the neutron diffusion equation for, say, the problem of 
axial synthesis, a family of trial functions is assumed for 
all the argument functions of the functional, including the 
Lagrange multipliers. As in Ref. 2, let us consider a 
reactor with k0 axial zones, with the k'th axial zone lying 
between Zk-i and zk. In the fc'th axial zone choose trial 
functions for u and u* as 

n(k) n(k) 

« = S £ (* )«• /* , y;*) and u* = E f?(z)g?(x,y;k) . <=i i=i 
(7) 

On the interface z = z^, choose trial functions for a and /3 
given by 

m(k) 
a(x,y;zk) = £) ai(zk)hf(x, y;zk) >=i 

m(,k) 
P(x,y;zk) = S bi(zk)hi(x,y;zk) . (8) 

;=i 
Here k ranges over all interfaces, k = 1, 2 , . . . k0 - 1. The 
Si > £?> Mi a n d h{ are known column matrices and the func-
tions fi(z), f*(z), and the constants ai(zk), bj(zk) are to be 
found by the variational method. The notation in which the 
trial functions for u and u* is expressed is somewhat 
different from that of Stacey's. The expansion modes 
g; and gf are column vectors, and the functions /,-(z) and 
f*(z) are scalars . The expansion modes Stacey uses are 
G x G diagonal matrices, and the coefficients of the expan-
sion modes are column vectors. However, every trial 
function of Stacey's form can be written in the form of 
Eq. (7) by choosing for the gj and gf column vectors with 
only one nonzero element, the position of the nonzero 
element being in the ^ ' th place, if g{ and gf correspond to 
tr ial functions for the ^ ' th group. In addition, Eqs. (7) can 
be used for group collapsed synthesis by appropriate 
choice of gt and g f . 

Note that the trial functions of Eqs. (7) do not assume 
the same number of modes in each axial zone, although 
Stacey does not mention that this extension was made in 
Ref. 2. As is discussed in Ref. 2, the number of modes 
m(k) in which the Lagrange multipliers for the surface 
z = Zk are expanded must bear a certain relationship to the 
number of modes n(k) and n(k + 1) in which the fluxes are 
expanded on either side of the interface, if the results are 



to be physically reasonable. However, as will be seen, no 
overdetermination problems arise. The number of modes 
m(k) which seem most reasonable is somewhere about 
midway between n(k) and n(k + 1). 

When the trial functions Eqs. (7) and (8) are substituted 
into the functional and the resulting reduced functional 
made stationary with respect to independent and arbitrary 
variations of f{(z), f f ( z ) , cn(zk), and bi(zk), then the 
following Euler equations for the reduced functional are 
obtained. We have, in the fe'th axial zone, 

/gfT(x,y;k) [ - V • V Z ) + (A - A _ 1 M ) ] udxdy = 0 , 

j = 1, 2 , . . . n(k) . (9) 

On the interface z= Zk we have 

fh?T(x,y;zk)[u{zk + e) - u(zk - e)]dxdy = 0 

i = 1 , 2 , . . . m ( k ) , ( 1 0 ) 

as well as 

/g f T (* ,3>;* + l ) [ D ( * , y , ^ + 6) ( f i ) -fyxdy = 0 

j = 1> 2 , . . . n{k + 1) (11) 

and 

fg?T(x,y;k)[D(x,y,zk-e) (|jf) ^ - p^dxdy = 0 , 

j = 1 , 2 , . . . » ( * ) . (12) 
In these equations, u and /3 are to be interpreted as the 
trial function expansions given by Eqs. (7) and (8). The 
analogous Euler equations determining the adjoint flux u* 
and a will not be written. In addition, we have that the n( 1) 
functions /,• (0) vanish at the bottom of the core z = 0, and 
that the n(k0) functions fi(h) vanish at the top of the core 
z = h, since the admissible trial functions must vanish on 
the outer boundary of the reactor. 

Stacey states that in synthesis applications of the 
Lagrange multiplier principle the interface overdetermi-
nation problem is avoided by choosing one of Eqs. (6) (of 
this letter) to guide the selection of trial functions for /3. 
This is quite simply false. Regardless of whether or not 
the hi(x,y,zk) are chosen so that one of Eqs. (6) is sat is-
fied, one does not have an overdetermination problem. 
Associated with each interface there are m(k) +n{k + 1) + 
n(k) conditions, and in addition one has n( 1) conditions at 
the bottom of the core and n(k0) conditions at the top of the 
core resulting from the requirement that u vanish at z = 0 
and z = h. Thus we have 

'ft [m(k)+n(k+ 1) +n(k)] + n(l) +n(k0) k=i 
conditions. The number of arbitrary constants in the 
general solution of the differential equations in the fe'th 
axial zone is 2 n ( k ) , and the unknown parameters bi(zk) in 
the trial function for fi are m(k) in number at the £'th 
interface. Thus the number of unknown constants is equal 
to 

kn fetf"1 

s 2»(fe) + S m(k) , 
k=i kf i 

and this is just equal to the number of conditions on the 
unknown constants. Thus there is no overdetermination 
problem, contrary to what Stacey says. 

Stacey states, in the construction of his table of extended 
variational principles, that he has reduced the Lagrange 
multiplier functional to an equivalent one by introducing the 

"requirements on the Lagrange multipliers" into the 
functional. It is important to realize that the so-called 
equivalent functional and the original Lagrange multiplier 
functional are not equivalent from the viewpoint of generat-
ing approximations. The reason for this is that the 
so-called "requirements" on the Lagrange multipliers, 
which requirements are Eqs. (6) of this letter (and the 
analogous equation relating a to u*), are not restrictions on 
the class of admissible functions but are relationships 
satisfied by u, /3, u*, and a at the stationary point of the 
functional. This means that in selecting trial functions for 
a and (3 we need not satisfy Eqs. (6) (and their counterpart 
for a), but that by use of the variational method these equa-
tions will be approximately satisfied in just the same way 
as the neutron diffusion equation; Eq. (4), which is another 
Euler equation of the functional, will be satisfied approxi-
mately. In fact, we see that Eqs. (6) are not satisfied 
exactly by our solution but only approximately, in the 
weighted residual sense, as is shown by Eqs. (11) and (12). 
It is precisely this freedom to choose trial functions for 0 
which do not satisfy Eqs. (6) exactly which permits the 
generation of new approximations by the Lagrange multi-
plier functional. These approximations cannot be derived 
from the functional which is obtained from the Lagrange 
multiplier functional by elimination of the Lagrange multi-
pliers. An analogous situation occurs with the f i rs t order 
(Selengut-Wachspress) functionals. (These are the J-type 
functionals of Stacey's article as opposed to the second 
order F-type functionals.) If trial functions for a f i rs t 
order F-type functional are chosen so that the Euler equa-
tions j = -Z)V0 and j* = -D *V<f>* are satisfied exactly, then 
the results are entirely equivalent to the use of a second 
order type functional. Under these circumstances, the use 
of the same class of trial functions for tj> in both functionals 
will yield the same reduced functional. In those cases 
where the F-type functional yields approximations not 
obtainable from the J-type functional the equations j = -Z)V0 
and j* = -D *V<j>* are not satisfied exactly by the trial 
functions. An example of this is the "staggered interface" 
method of avoiding the overdetermination problem. 

Later on in the article Stacey states that the Lagrange 
multiplier principle is equivalent to the principle F12 = 
Fi + F2 because /3 is equal to a linear combination of 
DV<j>(+) • N and DV<p(-) • N. From what has been said 
earlier it should be clear why this relationship does not 
prove equivalence. The relationship Stacey writes is 
satisfied only at the stationary point of the functional and 
not at an arbitrary point within the domain of admissible 
functions. The relationship need not be satisfied exactly by 
trial functions for /3 and u. 

I have therefore shown that there is no overdetermina-
tion problem with the Lagrange multiplier functional in the 
problem of axial synthesis, and have also shown that the 
Lagrange multiplier functional can yield results different 
from the functional F12 of Stacey, so that it is not equiva-
lent to F12 from the viewpoint of generating approximations. 

Another point which I should like to mention is that 
Stacey stated that I introduced a second order functional 
that admitted discontinuous trial functions and "Lam-
bropolous and Luco subsequently provided mathematical 
proof that second-order variational principles could be 
constructed which admit spatially discontinuous trial func-
tions." I had already proved that the Lagrange multiplier 
functional which I constructed admitted spatially discon-
tinuous trial functions. I had shown that the functional I 
presented had the correct stationary point, and that the flux 
continuity condition was one of its Euler equations. I did 
this both in Ref. 2 and Ref. 4. As related to my work, the 



Lambropolous and Luco contribution was merely to show 
that the volume term of the functional, which I wrote as a 
sum of integrals over disjoint regions Rk, could be written 
as an integral over the volume of the reactor if the integral 
is interpreted as a Riemann integral. For then the dis-
continuities do not contribute to the integral. 

Let me now pass on to consider briefly the alternative 
method of removing the overdetermination problem sug-
gested by Stacey. This involves the use of arbitrary 
diagonal matrices w„i{x,y) as weight functions on the 
6p*+ = 6p*_ condition (discussed on p. 456 ff of Stacey's 
article). In the case where the same number of flux and 
current expansion modes are used in each axial zone this 
method seems workable enough. However, it suffers f rom 
the defect that one does not have any guidelines on how to 
best choose these weight functions w„>(x,y). In the La-
grange multiplier method one knows that one should choose 
the modes in which 0 and a are expanded in such a way that 
they approximate the component normal to the interface of 
the current and adjoint current. If one is interested in ob-
taining accurate values of the functional, or in an eigen-
value problem an accurate value of the eigenvalue, this 
seems to be an important consideration. The remarks 
Kaplan5 makes seem pertinent here. 

There is, I believe, a more serious objection to Stacey's 
method when different number of flux and current expan-
sion functions are used in adjacent axial regions. He then 
states that the same number N* of adjoint flux and current 
expansion functions must be used in both regions, and that 
this number must equal the number of direct expansion 
functions in one of the regions. If, for concreteness, we 
assume N* = N+, then N* ± N_. But the number of f i rs t 
order differential equations in each zone is, in a one group 
problem, just given by 4N*. These equations are Eqs. (11) 
through (14) of Stacey's article. [Actually, Eqs. (11) and 
(14) are differential equations; Eqs. (12) and (13) are alge-
braic equations.] The index n' in these equations runs over 
the adjoint functions, and hence it is easy to verify that 
there are 4N* of these equations. The unknown flux and 
current variables in these equations are 4N in number. 
This means that one has 4N* equations in the 4N flux and 
current variables in the zone on the minus side of the 
interface. If N* < N-, then one has more unknown functions 
in this zone than one has equations, and the solution of the 
problem is underdetermined. If iV*> N., an overdetermi-
nation problem occurs with more equations than unknown 
functions of z , and there is no solution possible. 

A. J. Buslik 

Bettis Atomic Power Laboratory 
P. O. Box 79 
West Mifflin, Pennsylvania 15122 
May 30, 1972 
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Reply to "Comments on Variation Flux Synthesis 
Methods for Multigroup Diffusion Theory" 

Buslik's comments1 reflect more a difference in view-
point than any difference in substance, and to some extent 
indicate a misinterpretation of my paper.2 My basic posi-
tion is that the Lagrange multipliers can equally well be 
written as currents evaluated at the interface [i.e., Eqs. 

(5a) or (5b) and (6a) or (6b) of my paper], in which case the 
Lagrange multiplier functional is identical to the more 
transparent f u n c t i o n a l represented by F2, providing 
y, 12 = 0 ,1 in the latter, in that either functional contains 
some one scalar function weighting the difference in flux at 
the interface. Just as the Lagrange multiplier function a 
may be expanded in tr ial functions which are independent of 
the flux trial functions in the volumes, so may the terms 
•D+V</>* be expanded (i.e., there is no constraint that the 
expansion functions for interface terms be related to 
expansion functions for volume terms in the synthesis 
application). His remarks indicate that Buslik has incor-
rectly read such a constraint into my paper. 

Using the Lagrange multipliers, one comes upon the 
overdetermination problem in a different guise. There is 
no formal overdetermination in the derivation. However, 
when one looks to the Euler equations for guidance in 
selecting expansion functions, one is confronted with both 
Eq. (5a) and (5b) of my paper, and one must choose either 
one, some combination of the two, or neither. Using the 
functional F2 one comes formally upon the overdetermina-
tion problem if the functional is required to be stationary 
for arbi t rary independent variations of, for example, 
D+Vfa and Z)_V</>_. Setting y = 0 ,1 formally eliminates the 
overdetermination, but leaves one with the choice y = 0 or 
y = 1. This choice influences the guidance in selecting 
expansion functions. Thus, one is faced with basically the 
same problem in both cases, and the same range of options 
is open for its resolution in each instance. 

While I believe that most of Buslik's comments follow 
from the incorrect constraint assumption mentioned above, 
there are three points which I should like to respond to 
directly. 

His Lagrange multipliers are scalars in his surface 
integrals [Eq. (3) of his letter], and he subsequently shows 
in his Eq. (6) that these scalars are identifiable with the 
normal components of the current at the surface. He com-
mented that I incorrectly wrote the Lagrange multipliers 
as vectors. I wrote the Lagrange multipliers as the scalar 
product of the unit vector normal to the surface n and 
vector quantities a and /3. This scalar product is used in 
my Eq. (14), which is identical to his Eq. (3); i.e., his a is 
my n • a, etc. Thus, his comment, appearing just after 
Eq. (3) in his letter, is incorrect. 

Buslik also objects to the alternative method of remov-
ing the interface overdetermination which I suggested. He 
raises two points. First , he states that my method suffers 
f rom the fact that the weight functions w„(x,y) are arbi-
trary, which they are. At this point he argues, "In the 
Lagrange multiplier method one knows that one should 
choose the modes in which /3 and a are expanded in such a 
way that they approximate the component normal to the 
interface of the current and adjoint current. If one is 
interested in obtaining accurate values of the functional, or 
in an eigenvalue problem an accurate value of the eigen-
value, this seems to be an important consideration." 
Earl ier in his letter, in striving to make another point, he 
seems to argue the opposite: "Stacey states that in syn-
thesis applications of the Lagrange multiplier principle the 
interface overdetermination problem is avoided by choosing 
one of Eqs. (6) (of his Letter) to guide the selection of tr ial 
functions for /3. This is quite simply fa l se . " He cannot 
have it both ways. Relative to his comment on the arbi-
t rar iness of my <x>„, I would like to point out that all weight-
ing and expansion functions are arbitrary, in all synthesis 
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