
specia l case 6 = 0 must be interpreted as a casual coinci-
dence. In fact in Ref. 5 it is shown that the Appendix given 
by Gyftopoulos in Ref. 2 is wrong also fo r 6 = 0 . 

It is important to note that in Ref. 3 there is provided a 
r igorous proof for the asymptotic stability cr i ter ion f i r s t 
given by Akcasu and Dalfes (Ref. 6) in 1960 and la ter used 
by Akcasu and Akhtar (Ref. 7) and Lellouche (Ref. 8) to 
investigate the stability of a xenon controlled point r eac to r 
with the presence of tempera ture feedback. In Ref. 3 it is 
pointed out that the c r i te r ion is co r r ec t but the proof given 
in Ref. 6 is incorrect , because the asymptotic stability is 
based on the conclusion that dU(pi)/dx -» 0 as x -»°° if U(x) 
is non- increas ing and bounded below. This conclusion is 
not cor rec t , a s one can easi ly find counter examples. 
However, if dU(x)/dx is uniformly continuous then dU{x)/ 
& - > 0 a s « - " » b y a lemma given by Barbala t (Ref. 9). 
Since the uniform continuity of dU(x)/dx was not proved or 
mentioned in Ref. 6 the c r i t i c i sm by Di Pasquantonio and 
Kappel was justified. In fact , Akcasu and Akhtar (Ref. 10) 
had already presented a r igorous derivation of the new 
cr i te r ion given by Akcasu and Dalfes following the same 
analytical method given in Ref. 6 and using Barba la t ' s 
l emma. Unfortunately the authors of Ref. 3 did not know of 
this proof, and hence, could not take it into account in their 
paper . 

Finally the authors of this le t ter wish to thank Mr. 
Gyftopoulos and Mr. Akcasu for an interest ing cor respon-
dence which led to a complete agreement about the mat te r 
t rea ted in this l e t te r . 
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Comments on the Neutron Transport Theory 
with Anisotropic Scattering 

In this le t ter , which is concerned with one-group neutron 
t ranspor t with anisotropic scat ter ing in a homogeneous 
medium, it will be shown that there a re no d i sc re te 
eigenvalues of the t r ans formed t ranspor t equation within 
the region of continuous eigenvalues. The existence of 
d i sc re te eigenvalues in this region has been assumed by 
Mika,1 who applied the spher ica l harmonics method to the 
aforementioned problem. Zelazny2 has already shown that 

\ l . R. MIKA, Nucl. Sci. Eng., U, 415 (1961). 
2R. ZELAZNY, Nukleonika, 11, 2 (1966). 

in the case of one-group neutron t ranspor t with isotropic 
scat ter ing in a homogeneous medium, such eigenvalues do 
not exist . 

Analogously to Mika,1 the scat ter ing function is ex-
panded into a finite s e r i e s of Legendre polynomials 

N 
f{n' -> o) = (47r)-1 TjbKpK(wx a) 

K=0 

and introduced into Boltzmann's equation fo r plane geome-
try 

(l X (d/dx) J-) + 

K=0 J 1 

With help of the relation 

= exp( -x /v) <p(v,n) , 

the t ransformed equation 
N r+l 

( i / - . n ) x < ) M = b / 2 ) S bKpK(n) J pK{ii')${v,\i')dp.' 

(1) 

is obtained. Multiplication with ps(\i) and integration over 
fx f r o m - 1 to +1 yields 

(s + 1)/2(S+1)( v) - v[cbs - 2(s +1)] hs (v) + sh(s. « ( v ) = 0 , 

s = 0 , 1 , 2 . . . 

(2) 
where 

hK{v) = f^PK(ii)<i>(v,ii)dn , K= 0 , 1 , 2 . . . (3) 

h. ! M = 0 . (4) 

F r o m Eqs. (2) to (4) hK(v) ~h0(v). Therefore , the nor -
malization 

h0(v) = 1 (5) 
may be used without lose of generali ty. The general 
solution of (1) is 

i) = ( c / 2 ) [ v / ( v - n ) ] E bxP^h^v) +\(v)5(v - ii) • 
K=0 

There a re d i sc re te eigenvalues i>{ outside the interval 
[-1, +1] given by 

0( i / , )= 0 i / , * [ - l , + l ] , (6) 

where 
N 

flU) = 1 - czTj bKQK{z)hK(z) . (7) 
K=0 

Additionally, there is a continuum of eigenvalues v in the 
region [-1, +1] with 

X(u)=PQ{v) ve[-l, +1] . (8) 

The completeness of the resul t ing se t of eigenfunctions of 
Eq. (1) has been shown by Mika.1 

The nonexistence of d i sc re te eigenvalues within the 
continuum of eigenvalues will be demonstra ted by showing 
that the assumption 

l im SUz) = 0 ve[-l, +1] 
Z->v 

for a rb i t r a ry N leads to a contradiction to the normal iza-
tion Eq. (5). Application of P l e m e l j ' s formula to Eq. (7) 
yields 



N 
SlHv) = p n ( v ) ± (iuc/2) V Yj bKpK{v) hK(v) 

K=0 

f r o m which 

(inc/2) v j^bKp(v)hK(v) = 0 (9) 
K=0 

PU(v) = 0 . (10) 

Multiplying the well-known recu r rence relation for Leg-
endre polynomials 

(K + l ) & + i M - (2K+ l ) x v x pK(v) +K pK.r(v) = 0 

for K= 0,1,2, 

with /ZKM, and relat ion [Eq. (2)] with PK(V), subtract ing the 
resul t ing equations and per forming the summation over K 
f r o m 0 to Af yields 

N 
cvYjbKpK(v)hK{v) = (N+l) [pN+i(v)hN(v) - • 

K-0 

(11) 

Using the r ecu r r ence relation fo r the Legendre functions of 
the second kind 

(K + 1)Qk+i(v) - (2K+ 1)x v x Qk{U) +Kx Qk. 1{v) = 0 

fo r K = 1 , 2 , . . . . 

and the definition [Eq. (7)] of O(z) gives 

Pn(v) = -(N + 1) [P<?N+i(i/) hN{v) - PQs(v) hN+1(v)] (12) 

by induction f r o m N t o N + 1. 
Insert ing Eqs. (11) and (12) into Eqs. (9) and (10), 

respectively, mutiplying Eq. (10) with and Eq. (9) with 
PQm(v) and subtract ing the result ing equations yields 

[pN(v)PQN+ i(i/)- pN+1(v)PQN{v)]hN(v) = -(N+ 1 V'hM = 0 

f r o m which 

hs(v) = 0 fo r a rb i t r a ry N. 

Similarly, s tar t ing with the multiplication of Eq. (10) with 
Pn+i(v) and Eq. (9) with PQN+1(V) one finds 

ftN+i(v) = 0 . 

Thus, by repeated application of Eq. (2)ho(v) = 0, which is 
in contradiction to Eq. (5). 
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