
could stop he re . However, it is a simple mat ter of mult i -
plication and addition to include up to 0(£8) t e r m s in this 
second i terat ion and improve the accuracy even fu r the r . 

We thus obtain the expression for Ec to 0(£ a) : 

EC = EC 
G3D, 

I [from Eq. (4)] 

G3 c 3 

8192 
C 3G3 

1024 

(1 + A) + D2 E ' 
G3 D3 C3 
8(8192) 

G 3
3 C 3

4 

8(262, 144) 
(8) 

A s imi la r expression is obtained for the r ight-hand side 
of Eq. (3) up to 0 ( E 7 ) . The improved accurac ies computed 
by including these h igher -o rder t e r m s in the second i t e ra -
tion a r e shown in column 6 of Table I. In column 7 we show 
the accuracy if one includes the sin 5irx correct ion 

, C 5 f l + ( A / 3 ) ] £ 2 . 
I [from Eq. (8)] 24 

Thus, reasonable accuracy can be obtained in the second 
i terat ion for this problem. 

Louis M. Shotkin 

Brookhaven National Laboratory 
Upton, New York 11973 

August 13, 1969 

Comments on Theoretical and Experimental 
Criteria for Reactor Stability 

Kalinowski1 recently cr i t ic ized the proof of a stability 
c r i te r ion given by Gyftopoulos.2 But nei ther the arguments 
given by Kalinowski nor the reply by Gyftopoulos a r e 
sat isfying because the solutions of the corresponding 
kinetic equations [Eqs. (1) through (3) in Ref. 2] a r e 
in terpre ted in a finite dimensional Euclidean state space. 
Since these equations represen t a sys tem of functional-
d i f ferent ia l equations, it is necessary to in terprete the 
solutions in an appropriate function space [in this case 
C ( - ° ° , 0 ] ] . 

Indeed Eqs . (1) through (3) of Ref. 2 a re autonomous as 
Gyftopoulos says . This is due to the fact that (cf., Ref. 3, 
p. 764) 

I = l'XF(T - t)P(t)cIt = f_l/(-r)P(t + t)cIt . 

p(t + r), < r < 0, is a function in 0] usually denoted 
by the symbol pt. F o r any value of t the function p, belongs 
to the space C ( - ° ° , 0]. There fore , the integral I can be 
writ ten as I = F{pt). If t va r ies , then / changes its value 
only if p, va r ies as an element of C ( - ° ° , 0]. 

The Liapunov functional V used by Gyftopoulos [Eq. (17) 
in Ref. 2], contrary to the s ta tement of Kalinowski, is 
positive definite without any assumption over the integrals , 
if the given conditions on the pa rame te r s a re fulf i l led. If 
the calculations relat ing to the step f r o m Eq. (19) to 
Eq. (20) of Ref. 2 were co r rec t , then the time derivative of 

J O S E P H E. KALINOWSKI, Nucl. Sci. Eng., 34, 200 (1968). 
2E. P. GYFTOPOULOS, Nucl. Sci. Eng., 26, 26 (1966). 
3 F. DI PASQUANTONIO and F. KAPPEL, Energia Nucleare, 

15, 761 (1960). 

V would be only negative semidefini te p d not, as Gyfto-
poulos says , negative definite. In fact , V is ze ro fo r p(t) = 
0 and c,(i) (i = 1, . . , m) a rb i t r a r i ly . But apar t f r o m the 
co r rec tness of Eq. (20), which will be discussed below, the 
methodological foundation of the paper by Gyftopoulos is 
wrong, because it is not possible to apply c lass ica l 
theorems of Liapunov's d i rec t method to Eqs . (1) through 
(3) of Ref. 2, since these a r e funct ional-different ial equa-
tions and not ordinary different ial equations. In Ref. 3, 
considering Eq. (20) as cor rec t , it is shown that Gyfto-
poulos' c r i te r ion can be proved applying an extension of 
Liapunov's d i rec t method to funct ional-different ial equa-
tions given by Hale (Ref. 4). Moreover , since Gyftopoulos 
provides no proof f o r the domain of asymptotic stability 
given in Ref. 2 [in fact the domain defined by the in-
equalities (23) is merely a domain where V is positive 
definite], in Ref. 3 there is given a domain which is sure ly 
contained in the domain of at tract ion relat ing to the power 
equilibrium state . 

Some correspondence following up the publication of the 
paper quoted in Ref. 3 revealed an e r r o r in the step f r o m 
Eqs. (A7) to (A9) in Ref. 2. Prec ise ly , one has that f r o m 

|if(wi,w2)l2 = 4ReG(;wi)ReG(;a)2) +C2(wi,w2) (1) 

does not follow 

K{ui,o>2) = 2[Re G( ;wi )Reg-( jw 2 ) f ' 2 + jC(ui,w2) , 

(2) 
but more generally 

(w1;w2) = 2[Re GijujRe G( joj2)]1/2a(to1,a>2) 

+ C(W I , W 2 ) 0 ( W I , W 2 ) . ( 3 ) 

ff(O>I,W2) and |3(WI,W2) a r e complex numbers with |A| = IJ3| = 1. 

In other words, knowning |/f(wi,w2)|2 one can not d e t e r -
mine uniquely K(w i,w2). 

The incor rec tness of Eq. (20) in Ref. 2 is confirmed by 
the discussion of a par t icu la r case . F o r instance Gyfto-
poulos considers the case where b is very large . In fact, 
considering, as Gyftopoulos says, only the last integral 
t e r m in V we have 

y=bX f' a ^ p h ) k 2 { T ) d T (4) 

a 1 + P(t) 

and 

. b\ a - 1 - P(t)u2(t) 
V - a X 1 + Pit) * { t ) 

Now, if we have d2 = a and a, d > 1, then 

(5) 

-l<p(t)<d- 1 (6) 

implies 

-1 < p{t) < o - l . (7) 

Equations (5) and (7) prove that V is positive semidefinite, 
because b, a, X a r e positive constants . But according to 
Eq. (20) of Ref. 2, V should be negative semidef ini te! 

It is interest ing to mention that in the special case 6 = 0 
the condition Re G(w) > 0 given by Gyftopoulos coincides 
with the condition relat ing to the new stabili ty c r i te r ion 
given by the authors of this le t ter in Ref. 5, considering a 
new Liapunov functional and applying an extension of the 
stability theory given by Hale in Ref. 4. However the 
coincidence of G(a>) > 0 with the new cr i te r ion in the 

4J. K. HALE, J. D i f f . Eqs., 1, 452 (1965). 
5F. DI PASQUANTONIO and F. KAPPEL, to be published i 

Energia Nucleare. 



specia l case 6 = 0 must be interpreted as a casual coinci-
dence. In fact in Ref. 5 it is shown that the Appendix given 
by Gyftopoulos in Ref. 2 is wrong also fo r 6 = 0 . 

It is important to note that in Ref. 3 there is provided a 
r igorous proof for the asymptotic stability cr i ter ion f i r s t 
given by Akcasu and Dalfes (Ref. 6) in 1960 and la ter used 
by Akcasu and Akhtar (Ref. 7) and Lellouche (Ref. 8) to 
investigate the stability of a xenon controlled point r eac to r 
with the presence of tempera ture feedback. In Ref. 3 it is 
pointed out that the c r i te r ion is co r r ec t but the proof given 
in Ref. 6 is incorrect , because the asymptotic stability is 
based on the conclusion that dU(pi)/dx -» 0 as x -»°° if U(x) 
is non- increas ing and bounded below. This conclusion is 
not cor rec t , a s one can easi ly find counter examples. 
However, if dU(x)/dx is uniformly continuous then dU{x)/ 
& - > 0 a s « - " » b y a lemma given by Barbala t (Ref. 9). 
Since the uniform continuity of dU(x)/dx was not proved or 
mentioned in Ref. 6 the c r i t i c i sm by Di Pasquantonio and 
Kappel was justified. In fact , Akcasu and Akhtar (Ref. 10) 
had already presented a r igorous derivation of the new 
cr i te r ion given by Akcasu and Dalfes following the same 
analytical method given in Ref. 6 and using Barba la t ' s 
l emma. Unfortunately the authors of Ref. 3 did not know of 
this proof, and hence, could not take it into account in their 
paper . 

Finally the authors of this le t ter wish to thank Mr. 
Gyftopoulos and Mr. Akcasu for an interest ing cor respon-
dence which led to a complete agreement about the mat te r 
t rea ted in this l e t te r . 

F. Di Pasquantonio 

ENEL-Direzione Studi e Ricerche 
Centro Riceroa di Automatica 
Via Beruto 18 
I 20131 Milano (Italy) 

F. Kappel 

2. Lehrkanzel fur Mathematik 
Technische Hochschule in Graz 
Kopernikusgasse 24 
A 8010 GRAZ (Austria) 
July 16, 1969 
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Comments on the Neutron Transport Theory 
with Anisotropic Scattering 

In this le t ter , which is concerned with one-group neutron 
t ranspor t with anisotropic scat ter ing in a homogeneous 
medium, it will be shown that there a re no d i sc re te 
eigenvalues of the t r ans formed t ranspor t equation within 
the region of continuous eigenvalues. The existence of 
d i sc re te eigenvalues in this region has been assumed by 
Mika,1 who applied the spher ica l harmonics method to the 
aforementioned problem. Zelazny2 has already shown that 

\ l . R. MIKA, Nucl. Sci. Eng., U, 415 (1961). 
2R. ZELAZNY, Nukleonika, 11, 2 (1966). 

in the case of one-group neutron t ranspor t with isotropic 
scat ter ing in a homogeneous medium, such eigenvalues do 
not exist . 

Analogously to Mika,1 the scat ter ing function is ex-
panded into a finite s e r i e s of Legendre polynomials 

N 
f{n' -> o) = (47r)-1 TjbKpK(wx a) 

K=0 

and introduced into Boltzmann's equation fo r plane geome-
try 

(l X (d/dx) J-) + 

K=0 J 1 

With help of the relation 

= exp( -x /v) <p(v,n) , 

the t ransformed equation 
N r+l 

( i / - . n ) x < ) M = b / 2 ) S bKpK(n) J pK{ii')${v,\i')dp.' 

(1) 

is obtained. Multiplication with ps(\i) and integration over 
fx f r o m - 1 to +1 yields 

(s + 1)/2(S+1)( v) - v[cbs - 2(s +1)] hs (v) + sh(s. « ( v ) = 0 , 

s = 0 , 1 , 2 . . . 

(2) 
where 

hK{v) = f^PK(ii)<i>(v,ii)dn , K= 0 , 1 , 2 . . . (3) 

h. ! M = 0 . (4) 

F r o m Eqs. (2) to (4) hK(v) ~h0(v). Therefore , the nor -
malization 

h0(v) = 1 (5) 
may be used without lose of generali ty. The general 
solution of (1) is 

i) = ( c / 2 ) [ v / ( v - n ) ] E bxP^h^v) +\(v)5(v - ii) • 
K=0 

There a re d i sc re te eigenvalues i>{ outside the interval 
[-1, +1] given by 

0( i / , )= 0 i / , * [ - l , + l ] , (6) 

where 
N 

flU) = 1 - czTj bKQK{z)hK(z) . (7) 
K=0 

Additionally, there is a continuum of eigenvalues v in the 
region [-1, +1] with 

X(u)=PQ{v) ve[-l, +1] . (8) 

The completeness of the resul t ing se t of eigenfunctions of 
Eq. (1) has been shown by Mika.1 

The nonexistence of d i sc re te eigenvalues within the 
continuum of eigenvalues will be demonstra ted by showing 
that the assumption 

l im SUz) = 0 ve[-l, +1] 
Z->v 

for a rb i t r a ry N leads to a contradiction to the normal iza-
tion Eq. (5). Application of P l e m e l j ' s formula to Eq. (7) 
yields 


