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causes D(v) to fluctuate, the derivative of vZ fluctuates 
even more sharply, and the effect upon R(t) is to make it 
appear to be composed of discrete, exponential modes. 
This is the effect we seek. It should account for the 
experimental results without recourse to a cut-off in 
velocity3. 
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On the Use of the Poincare-Bertrand Formula in 
Neutron Transport Theory 

In a recent letter, Jacobs and Mclnerney1 have ques-
tioned some of the results obtained by the normal-mode 
method2 in one-speed neutron transport theory. For in-
stance, the version of the full-range closure relation (for 
isotropic scattering), which is implicit in some previously 
reported results2 '3 , 
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is criticized. Instead, the right-hand side should read as1 
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in Mika's notation3. This criticism also applies to a num-
ber of previously established results for Green's function 
and albedo problems, where integrals similar to that in Eq. 
(1) appear in the expressions for the angular density. 

The difference between (1A) and (IB) l ies in the inter-
pretation of Cauchy principal-value integrals, if the inte-
grand has two singularities that are allowed to merge. Such 
integrals are handled by the Poincare-Bertrand formula4, 
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with jLt inside the interval over which both integrations are 
carried out. 

This formula is not completely clear until we define what 
is meant by the integral over v on the right-hand side 
when fjt'—* /i. This is done by using the identity4 
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with the agreement that the limit ju'—»'u may be carried out 
only after integration over v. 

Other definitions of the limit of that integral can be pro-
posed that lead to an infinity like 5(}i - ju')- Since there is 
some freedom in the choice of the definition, we take the 
liberty to modify Eq. (3B) in such a way that the extra term 
from the Poincare-Bertrand formula is incorporated here. 
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That is, we define5 
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so that (2B) is replaced by 
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As in version B, each side of Eq. (3A) applies to the cor-
responding side of Eq. (2A). That is, the left-hand side of 
Eq. (3A) can be used only if the integration over ju or jLtf 

comes first, whereas we use the right-hand side if the inte-
gration over v is to be carried out first. 

To summarize, we now have two versions of the 
Poincare-Bertrand formula: Eqs. (2B) and (3B) or, alter-
natively, (2A) and (3A). With either version, a consistent 
system of formulas for neutron transport theory can be 
constructed. Jacobs and Mclnerney have demonstrated this 
for version B, and several earlier authors for version A. 
For example, in the two versions the integrand occurring 
in Eq. (1) is analyzed according to the following identities: 
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This explains the difference between Eqs. (1A) and (IB). 
For neutron transport theory, version A is to be recom-

mended for two reasons. The first is tradition; except for 
the work of Jacobs and Mclnerney1'6, version A has been 
used consistently in this field, although sometimes without 
due explanation. Secondly, many formulas and derivations 
are much simpler and shorter in this version because Eq. 
(2A) permits us to formally switch orders of integration. 
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A Note on the Adjoint Function in the Time Optimal 

Xenon Shutdown Problem 

Smith and Roberts1 (hereinafter I) have recently applied 
the Pontryagin theorem to time optimal xenon shutdown in 
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an elegant and successful way. The purpose of this note is 
to point out one aspect of the adjoint functions used in the 
analysis in respect to their reversed-time problem. 

From Eqs. (2) and (11) of I we have Hamiltonian densities 
in forward (£+) and backward time (*-) of the form 

H(t+) = p(t+)'f(t+); H(t-) = - p(t-).f(t-). (1) 

But both are to satisfy Theorem 1, that H ^ 0. Clearly, 
therefore, the adjoint functions are not the same in the two 
times but rather p(t+) = - p(t- ), f(t) having even parity. 
Therefore when Smith and Roberts determine the sign of 
p2, it is rather significant to ensure that they are treating 
the correct p2. This may be done most easily perhaps by 
evaluating the Hamiltonian densities at the final time, ti, 
when the shutdown trajectory meets the target curve fi. 

It is clear from Fig. 1 of I that if the target curve is 
intersected by the final trajectory in the region of interest 
then the slopes must satisfy 
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where subscript </) indicates the shutdown at maximum flux. 
But the boundary condition on the adjoint functions obtained 
from the transversality conditions (the same in forward and 
reversed time) is 

dX 
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Furthermore, from Fig. 4 of I, dl/dt is positive at tx in 
the region of interest. 

Evaluating H(t-) we have 
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Then for a posit ive^ we must generally take pziti-) to be 
positive, confirming the supposition of L Furthermore, if 
H(ti+) is to be positive, we must take p2(ti+)to be negative 
as already predicted. 

Note that the sign is not determined by the transversality 
condition alone since orthogonality is equally satisfied by 
the inward as the opposite outward pointing vector. 

The resulting adjoint functions in real time are there-
fore negative through the control period, conflicting with 
our usual ideas of perturbation theory and the importance 
of a source of iodine or xenon. This difficulty can be re-
moved on making an obvious change in the optimization 
theorem. We now require that for a minimum control 
period, the Hamiltonian is to take its least value as 
a function of the flux and that the result is not positive: 

H = inf H(p, x, 0) < 0. (5) 

Then in real time the adjoint functions will be positive 
(negative in reverse time). This restatement leaves the 
switching points unaffected, of course, but is somewhat 
more in line with the 'traditional' calculus of variations for 
isoperimetric problems. 
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