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Fig. 1. Curve A shows the calculated values of (X-2av) as a 
function of B2 for beryllium at room temperature. The broken line 
shows \ym whereas the full straight line gives XK. Circles are the 
experimental points of Andrews8. 

We would like to mention at the end that the eigenvalues 
of the complete Eq. (2) without the cutoff in energy will 
dominate only after long times but by then most of the 
neutrons would have leaked out. 

Details of this work are to be reported shortly. 
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Decay Constant of a Neutron Pulse 

ing result. It is not an explanation, because it rests upon 
the ad hoc notion that one should limit the range of neutron 
velocities. We are aware of no physical principle or 
experimental constraint that compels one to cut-off at ten 
degrees, or at five degrees, especially when the experiment 
is marked by a strong diffusion-cooling effect. If the 
physicist observes an exponential decrease characterized 
by X > X* = (vZ)min, the phenomenon must be understood 
through reasoning based upon the Boltzmann equation in the 
full domain of the velocity variable, v. 

It is not at all difficult to find a qualitative explanation 
for this phenomenon; indeed, Dr. Michael and I convinced 
ourselves of one in 1962, when we first discussed the 
bounds on the discrete X's. It is this: When the system is 
small enough, no discrete X's will exist, and the evolution 
of the pulse will be described in terms of a continuous 
spectrum of decay constants. Then, the amplitude, ^4(x), 
which is associated with the X's between X and X + dX, will 
play a particularly important role. >l(x) will reflect the 
scattering properties of the moderator; in the case of a 
coherent crystalline sample, it will show considerable 
oscillation, while it will vary smoothly when the moderator 
is an incoherent scatterer. Since a sharp peak (or valley) 
in ^4(x) at X = XP > X* produces an effect upon integration, 
rather like that of a discrete mode ~ exp(- XPt), one sees 
that such a pseudo-mode may well be found in a coherent 
scatterer. Further, we shall see that the value of X'P one 
obtains l ies close to that suggested earlier by deSaussure4 . 
Of course, XP, while it may dominate the decay of the pulse, 
is in no way connected with a fundamental or asymptotic 
mode. After a sufficiently long time, the portion of the 
continuous spectrum in the neighborhood of X* will dominate 
the decay. 

I can make the argument more quantitative by treating 
the leakage of neutrons by diffusion theory. (The diffusion 
approximation is hardly justified, but it yields the main 
features of the argument.) Then, for sufficiently large 
buckling, 

N(v,t) = dxe~* A(X, v). (1) 

One can show, now, that2 

A(X,v) = [ p ^ ^ ^ y +/(X) 6 (^-X)J gfrv), (2) 

where P denotes 'principalvalue,' / a n d ^ a r e 'smooth' in X, 
and 

vZ = vXStinei + vD(v)B2 (3) 

The response, R(t), of a 1/v detector to the pulse will 
be given by the integral of Eq. (1) with respect to v 
Equation (2) tel ls us that the result is 

f™ dvN{v,t) = dxe' •xt B ( x ) , / ( x ) g i M ( \ ) ) 

dv 
vZ 

v(X) J 

(4) 

In Eq. (4) ^(X) is the solution to vZ(v) = X, an equation 
assumed, for simplicity, to have only one solution. The 
quantity in square brackets is the amplitude, i4(X), men-
tioned above. Its fluctuating nature stems from the 
denominator of the second term. When coherent scattering 

Dr. Kothari1 has shown that if one uses a particular 
model for the scattering of neutrons by beryllium, and 
works with a cut-off scale of velocities, one will obtain the 
values of XQ(B2) measured by Andrews. This is an interest-

*L. S. KOTHARI, Nucl. Sci. Eng., this issue, p. 402. 

2See, tor example, R. BEDNARZ and J. MIKA, J. Math. Phys., 4, 
1285 (1964). 

3These conclusions are illustrated by the recent numerical calcu-
lations of A. GHATAK and H. C. HONECK, Nucl. Eng., 21, 227 
(1965); J. Nucl. Eng., 19, 1 (1965). 

4G. de SAUSSURE, Nucl. Sci. Eng., 12, 433 (1962). 
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causes D(v) to fluctuate, the derivative of vZ fluctuates 
even more sharply, and the effect upon R(t) is to make it 
appear to be composed of discrete, exponential modes. 
This is the effect we seek. It should account for the 
experimental results without recourse to a cut-off in 
velocity3. 
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On the Use of the Poincare-Bertrand Formula in 
Neutron Transport Theory 

In a recent letter, Jacobs and Mclnerney1 have ques-
tioned some of the results obtained by the normal-mode 
method2 in one-speed neutron transport theory. For in-
stance, the version of the full-range closure relation (for 
isotropic scattering), which is implicit in some previously 
reported results2 '3 , 

M, M_ 

J-1 M{v) n ' 

is criticized. Instead, the right-hand side should read as1 

^ a o w ) , (IB) 

in Mika's notation3. This criticism also applies to a num-
ber of previously established results for Green's function 
and albedo problems, where integrals similar to that in Eq. 
(1) appear in the expressions for the angular density. 

The difference between (1A) and (IB) l ies in the inter-
pretation of Cauchy principal-value integrals, if the inte-
grand has two singularities that are allowed to merge. Such 
integrals are handled by the Poincare-Bertrand formula4, 

fdvfdii'Fi —P——r 

= 7t 2 FU,U) , (2B) 

with jLt inside the interval over which both integrations are 
carried out. 

This formula is not completely clear until we define what 
is meant by the integral over v on the right-hand side 
when fjt'—* /i. This is done by using the identity4 

p - L p - M p - p-W|, 
V - [1 V ~ [L jLt - jLt [_ V - \1 V - jLt J 

(3B) 

with the agreement that the limit ju'—»'u may be carried out 
only after integration over v. 

Other definitions of the limit of that integral can be pro-
posed that lead to an infinity like 5(}i - ju')- Since there is 
some freedom in the choice of the definition, we take the 
liberty to modify Eq. (3B) in such a way that the extra term 
from the Poincare-Bertrand formula is incorporated here. 

XA. M. JACOBS and J. J. McINERNEY, Nucl. Sci. Eng., 22, 119-
120 (1965). 

2K. M. CASE, Ann. Phys., 9, 1-23 (1960). 
3J. MIKA, Nucl. Sci. Eng., 11, 415-427 (1961). 

I. MUSKHELISHVILI, Singular Integral Equations, Noordhoff, 
Groningen (1953). 

That is, we define5 

p ^ - P - 1 
V - jLt V - FL' 

Noel Corngold 

= r\p—— - P rl + - n)^ - fi'h jLt - jLt V - \± ^ - M J 

so that (2B) is replaced by 

f d . f d . ' F M P y ^ P ^ 

(3A) 

(2A) 

As in version B, each side of Eq. (3A) applies to the cor-
responding side of Eq. (2A). That is, the left-hand side of 
Eq. (3A) can be used only if the integration over ju or jLtf 

comes first, whereas we use the right-hand side if the inte-
gration over v is to be carried out first. 

To summarize, we now have two versions of the 
Poincare-Bertrand formula: Eqs. (2B) and (3B) or, alter-
natively, (2A) and (3A). With either version, a consistent 
system of formulas for neutron transport theory can be 
constructed. Jacobs and Mclnerney have demonstrated this 
for version B, and several earlier authors for version A. 
For example, in the two versions the integrand occurring 
in Eq. (1) is analyzed according to the following identities: 

cv 

6(v - v)b(v - ju'), (4A) 

0(^,jLt)0(//,jLt ;) = ~ [0(l/,jLt) - 0(^,/j')] 2 H 

+ \2(h)6(v - n)6(v - Id'). (4B) 

This explains the difference between Eqs. (1A) and (IB). 
For neutron transport theory, version A is to be recom-

mended for two reasons. The first is tradition; except for 
the work of Jacobs and Mclnerney1'6, version A has been 
used consistently in this field, although sometimes without 
due explanation. Secondly, many formulas and derivations 
are much simpler and shorter in this version because Eq. 
(2A) permits us to formally switch orders of integration. 
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A Note on the Adjoint Function in the Time Optimal 

Xenon Shutdown Problem 

Smith and Roberts1 (hereinafter I) have recently applied 
the Pontryagin theorem to time optimal xenon shutdown in 

XJ. J. ROBERTS and H. P. SMITH, Jr . , "Time Optimal Solution to 
the Reactivity-Xenon Shutdown Problem," Nucl. Sci. Eng., 22, 470 
(1965). 




