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Void Streaming in SM Calculations 
Corrections for the end effects of neutron 

streaming through void regions generally are 
expressed1 3 in terms of critical bucklings or 
effective migration areas and diffusion coeffi-
cients. These are then applied when solving the 
diffusion equation in the plane normal to the 
direction of streaming (e.g. in the horizontal mid-
plane of a reactor with vertical void channels). 
While this is convenient in diffusion theory, it is 
not appropriate in transport theory since D, the 
diffusion coefficient, does not appear explicitly. 
Conversely, one should utilize the angular variable 
in the transport solution and express the direc-
tional streaming losses explicitly. 

Correction for these transverse streaming 
losses in one- or two-dimensional transport solu-
tions is simple when the SN method is used4. 

Let the region dV (Fig. 1) be a differential 
volume element of the void region within the 
three-space X-Y-Z. We wish to solve the two-
dimensional transport equation in the plane X-Y 
or the one-dimensional transport equation in the 
direction x (plane geometry) or r (cylinder geom-
etry). In each situation, particle loss by stream-
ing occurs in the direction z. 

•o Y 

Fig. 1. Geometry of neutron streaming from void 
region. 

Let Ho be the half-height or extent of the void 
region above the symmetry plane X-Y. The term 
N is the number of particles flowing in the direc-
tion ft at position r, for each unit time, and for 
each unit area normal to the direction ft. 

In the X-Y geometry instance, the leakage rate 
in direction ft from the volume dV is z • QNdA 
but the leakage rate for each unit volume is 

A p . 

£ . QNdA/dV or - ^ 4 ? N . H0 

Thus the transport equation becomes 

S2 • VN + 
f z . a \ 

N- S = -
dN 

31 
(1) 

In the void region the collision cross section Sand 
the source term S are zero. Outside the void 

region the term 
2 • ft 

is omitted. Equation (1) is 
obtained similarly in the one-dimensional plane or 
cylinder geometry case. 

z • ft 

Including the void correction 
Ho 

in the 

solution of Eq. (1) is simple when using the SN 

method since the factor z • ft already appears 
explicitly or is readily available. 

In the 2DXY-plane5 and DSN-cylinder6 solution 
it is 

^ • ft = M-m , (2) 
where Jim is the linearly averaged value of 
z • ft in the m-th polar angle segment4. In the 
DSN plane-geometry solution it is 

z • ft = VI-jLm* , (3) 

where Jlm is the linearly averaged value of 
ft • x in the m-th angular segment4. The newer SN 
codes7, DTK, DDK, and DTF, can be modified 
similarly to implement the correction. 

The void correction term in Eq. (1) is an ap-
proximation, appropriate only for general (two-
dimensional) and degenerate (one-dimensional) 
solutions in the plane X-Y. In a three-dimension-
al representation the leakage probability is a 
function of the Z coordinate also; a particle trav-
eling in some direction ft ^ Z obviously has a 
higher leakage probability near the ends (Z =± Ho) 
of the void region than at the center (Z= 0): it has 
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a smaller chance of crossing the void gap and 
entering the adjacent non-void regions. 

Therefore, one should undertake some numeri-
cal checks of the method described here before 
applying it to specific problems. I do not have an 
opportunity to do this, at present, and have sub-
mitted this letter trusting someone else will. 
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Comments on "Generalizations of 
Fick's Law"* 

In this letter we present several comments on 
a letter by Kostin1. For brevity, we shall refer to 
"Eq. (n) of Ref. 1" as " (K-n ) . " 

(I) The "generalized Fick's law" (K- l l ) is al-
leged to have the simplicity of Fick's law. We 
believe that this is not so, for the following 
reasons: 1) The quantity which appears under the 
derivative sign is v2(z)N(z ) and not N(z). 2) The 
&tr (z), which plays the role of a reciprocal diffu-
sion coefficient, is not an intensive property ^f the 
medium2?3. Even in a homogeneous medium, ku(z) 
may vary with z. 3) the ktr (z ) depends explicitly 
on the neutron distribution n{z_yv In the time-
dependent form (K-7), the kn(z,t) depends ex-
plicitly on n(z,v, It follows that ktr(z,t) may 
be a function of time in a system with fixed 
composition and fixed boundaries. 

(II) The definition (K-5) of a(z,v') is, with 
trivial changes in notation, 

fXs(z,v'-*v9 w'- u)vdvdu = vfa(z,v ') Xs(z,vr). 
This definition does not lead to (K-7) or (K- l l ) ; 
however a corrected definition 

JUsiZyV'-^VioS- u)viidvdu = v'ii'a(z,v')Zs(z,v ') 

( 1 ) 

does lead to (K-7) and (K- l l ) . (In an appendix at 
the close of this letter, we answer a question 
regarding the definition of a in Eq. (1).) To verify 
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this statement, apply the operator Jiivdvdoj to 
(K-4) to obtain 

dJ^fL = ' W b2v*n(z>v>«L,t)dvdu-

- j[iv2 H(z,v)n(z,vf(j),t)dvd<ji) + 

+ fnvvr 2 s ( z , v'-^v, a/* oS) x 

X n(z, vw,,t)dv,d(i)rdvdu) . (2) 

By use of the definition of a(z, vr) from Eq. (1) we 
may write the final term as 

fl±r( v')2 a(z,vr) TtsiZyV^niZyV^fWv'du* 

= J\LV2 a(z,v) ?*s(z,v)n{z,v9(x),t)dvd<j) 

and obtain (K-7) and (K- l l ) unaltered. The defini-
tion (K-5) does not allow this transformation 
of the final term of Eq. (2). 

(EI) If the goal is to remove the one-velocity 
restriction from (K-l), then we feel that a better 
way is to apply the operator J\id<j) rather than 
Jv\idvd(j) to (K-4). Furthermore, we feel that it 
is preferable to include on the right-hand side of 
(K-4) a source term S(z,v, This source may 
be caused by fissions, and we assume it to be 
isotropic in the sense that J\iSd<j) = 0. In the time-
independent case, the immediate result of applying 
Jjidoo to this modified (K-4) is 

0 = -v-^ fifn(z,v,u)dw-vZ{z,v)fiin(z,v,(£)d<jo + 

+ J*iivrn(z, vf,ur)Hs{z,v^fjCo' • (gjdv'dv'du. 

With the definitions 

J(z, v)= vfm(z,v,<jo)du, 

N(z, V) =fn(z,v,u)du, 

2s{z,vt-*v)= fzs(z, vr-*v,u'- co)dco , 

fliXs(z, co)dco= li'lio(z,v'-*v)2s(z,v'->v), 

(3) 
and 

Az,v) = fv.2n(z,v,u)du/N(z,v) , 

this result becomes 

0 = -vjz [ju2 (z ,v )N{z ,v ) ] - X(z,v)j(z,v) + 

+ fj{z,v')fr>{z,v'--v)Vs(z,v'-*v)dvt. (4) 

(In an appendix at the close of this letter, we give 
concise answers to certain questions regarding 
the definition of Jj£ in Eq. (3). 


