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The fluxes calculated by the 05R code are 
compared, as a function of distance, in Fig. 2 with 
the scattered flux computed by Beach et al. One 
notes first that the 05R results are consistent with 
each other. The low 05R fluxes at distances 
greater than 6 mfp (mean free paths) demonstrate 
the characteristic Monte Carlo systematic error 
mentioned above and are caused by an insufficient 
number of neutrons penetrating to distances far 
from the source. The high values of 05R results 
compared with those of Beach et al. at the origin 
are no doubt due to the contribution of a few 
neutrons having very small values of ju in Eq. 1. 

The angular distributions of scattered neutrons 
at 0, 0.5, 1, and 5 mfp from the source plane are 
compared with the results of Beach et al. in Figs. 
3-6, respectively. The 05R results are averages 
over a 0.1 interval in /!, plotted at the midpoint of 
the interval. Noticeable in the data for the mixture 
of light scatterers is the large contribution in the 
0 to 0.1 interval adjacent to the source plane 
due to the contributions of low-jut neutrons. The 
semianalytic result, of course, goes to infinity at 
the source plane. In all cases of 05R results are 
consistent. Agreement with the semianalytic r e -
sults is good to 1 mfp, and not really poor even at 
5 mfp. At this depth, of course, the agreement is 
considerably better for positive fi than for negative 
jut, since so few neutrons penetrate deeply into the 
medium and are scattered back toward the origin. 

The error bars shown on some of the points 
are consistent for both media and represent the 
standard deviation computed from the relation 

a = F n 

puting a multiplication constant. The second con-
sidered a scattering medium having a mass of 
15 000 with isotropic scattering in the center-of-
mass system but introduced the neutrons in a 
fission spectrum. This calculation, by comparison 
with the first, tested the equivalence of the 
constant cross-section one-velocity and multi-
velocity cases on 05R. The third calculation 
was the test of the anisotropic scattering treat-
ment. The medium was a half-and-half mixture of 
scatterers having masses of 2 and 3, with each 
having a P8 approximation to the center-of-mass 
distribution which yielded an isotropic angular 
distribution in the laboratory system. At least 20 
iterations of 400 histories each were performed in 
each calculation, with the first five being dis-
carded in the computation of the multiplication 
constant to permit spatial convergence of the 
source distribution. 

The results of the calculations are compared 
with the exact results in Table II. The calculations 
testing the anisotropic-scattering selection tech-
nique, those for the {A = 2) + (A = 3) mixture, are 
consistent with the other 05R results and are in 
agreement with the exact results. 

The consistency of the anisotropic-scattering 
medium results obtained with the Monte Carlo 
calculations and the demonstrated agreement with 
semianalytic and exact results indicate that Cove-
you's selection technique is appropriate and has 
been properly incorporated into the 05R code. 

W. E. Kinney 

where W = the neutron weight and N' = the total 
number of source neutrons. 

A second test of the anisotropic-scattering 
selection technique was the calculation of the 
multiplication constant for one-velocity neutrons 
in infinite slabs, infinite cylinders, and spheres of 
media having isotropic scattering in the laboratory 
system. Exact results for such problems have 
been tabulated by Carlson and Bell4. The number 
of secondaries per collision was arbitrarily taken 
as 1.1 for the comparison. 

Three calculations were performed for each of 
the configurations. The first was a strictly one-
velocity problem with isotropic scattering in the 
laboratory system. This was intended to evaluate 
the accuracy of the Monte Carlo method in com-
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The Albedo Problem 

In a recent note, Rafalski1 has considered the 
problem of computing the probability that a 
neutron will be reflected (the albedo) if it is 
perpendicularly incident on a semi-infinite half-
space. His method of solution consisted of intro-
ducing an approximation into the integral trans-
port equation describing the problem and led to a 
simple analytic result for the albedo. We show 
that the application of the variational method to 
this problem also leads to a simple analytic ex-
pression for the albedo and that this expression is 
significantly more accurate. Exact formulations 

*P. RAFALSKI, Nucl. Sci. Eng., 19, 378 (1964). 
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of this albedo problem are given by Chandrase-
khar2 and Davison3. 

Following Rafalski, we consider the one-veloci-
ty transport problem of a semi-infinite halfspace 
with absorption and isotropic scattering occupying 
the space 0 ^ z ^ We generalize the problem by 
allowing the neutron flux incident at z = 0 to have 
an arbitrary distribution B(n), where fi is the 
cosine of the angle between the £ axis and the 
velocity vector of the neutron. Consider the 
functional 

= fo°° d x f-\ Mil -

- 0*(*,JA)ff0(2,|l)] -

- f l dw4*(o,n)[0M -B(n)], (l) 
where H is the integro-differential transport 
operator, 

a H d 1 c Cl J 9 
= 2 A x ^ - (2) 

H<KZ,V) = 0 , ( - 1 « N « l ) , 

0(0,u) = B(H), (0 < H * 1), 
(4) 
(5) 

and 

H*<p*{z,[i) = ( 1 - c ) , ( - 1 ^ JUL ^ 1 ) , ( 6 ) 
0*(O,fi) =0 , ( - 1 ^ n < 0 ) . (7) 

Equations (4) and (5) describe the problem under 

2S. CHANDRASEKHAR, Radiative Transfer, Dover, New 
York, (1960). 

3B. DAVISON and J. B. SYKES, Neutron Transport 
Theory, Oxford, (1958). 

consideration, and Eqs. (6) and (7) describe the 
associated adjoint problem. Further, if the solu-
tions of Eqs. (4) through (7) are inserted into 
Eq. (1), we find 

F[M*] = i ; dz SI1 - cMz,n) (8) 

This is just the absorption rate in the halfspace 
which, by neutron conservation, is the product of 
the incoming current Jln and (1 - A) where A is 
the albedo and 

Jin = So dmB{\i). 0 ) 
Thus the functional, Eq. (1), is both the Lagrangian 
for the problem and yields second order errors in 
the albedo for first order errors in the flux and 
adjoint flux. 

As trial functions, we choose the asymptotic 
distributions which are bounded at infinity, i.e. 

-vz 

(10) 1 / , Ke 
\iV 

c is the mean number of secondaries for each 
collision, </>(z,ii) is the directional flux and </>*(£,jti) 
is the adjoint directional flux. The spatial co-
ordinate >2 is measured in units of mean free 
paths, i.e., in units of 1/2, where 2 is the 
macroscopic collision cross section. The first 
variation of Eq. (1) is 

6 F[(j>,(t>*] =So°°dz S\ d l W M W M -

~So°dz S\ diiiHH^z^-il-c^mz^ 

+ rfjuijLi0*(O,jui)60(O,juL)-

- £ d ^ m 0 , n ) - B ( / X ) ] 6 0 * ( O , J L L ) . 

(3) 
Because of the independence and arbitrariness of 
these four variations, 6F = 0 implies 

K*e~vz 
</>*(*, ll) = + 1 r 1 + \1V (11) 

where ^ is a positive quantity satisfying the 
transcendental equation 

2v , /I + v. — =ln(rr-,)> (12) 

and K and K* are constants to be determined. 
Substituting Eqs. (10) and (11) into Eq. (3), per-
forming the angular integrations, and setting the 
coefficients of 6K and 6K* equal to zero, we find 

K = -2v2T 

lnU-1/2) J<in > 

_ 2\v - ln(l + v)] 
' ln(l - v2) 

where we have defined 

R ^ JU VB(ii) 
+ \iv 

£ dwiB{y) 

(13) 

(14) 

(15) 

If we now substitute Eqs. (10) and (11), with K and 
K* given above, into the functional, Eq. (1), equate 
the result to J in(l - A), and solve for the albedo A, 
we find the simple result 

2T 
M W T I** 1 + " > - " ] • 

(16) 

In particular, if the incident flux is a beam 
normal to the surface, i.e., B(fi) = 6(1 -ju), Eq. (16) 
yields 
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A(beam) 
(1 + i / ) ln( l - i / ) 

[ ln ( l + I / ) - I / ] . (17) 

From Rafalski's paper, his result for a normal 
beam is 

A(Rafalski) = 1 - (1 - c ) 
1 - [1 + l n ( 1 + 1 

^ J 

Equation (18) can be simplified by using Eq. (12). 
The result is 

A(Rafalski) _ ln(l + v) - v (19) ln(l - v) + v 
In this form it is clear that our result is different 
from that of Rafalski. Table I compares these two 
expressions for the albedo, Eqs. (17) and (19), with 
the exact result. If the incident flux is isotropic, 
i.e., B(jm) = 1, Eq. (16) yields 

-4 A(isotropic) v2, ln(l - v*) [ln(l + v) - vf 

(20) 
Table II compares Eq. (20) with the exact results 
given by Maynard4. We see that in both cases 
we find excellent agreement between Eq. (16) and 
the exact results. Since the anisotropy of a gener-
al B(fi) lies between these two cases, we can con-
clude that Eq. (16) is probably quite accurate for 
all B(fi). 

The functional analogous to Eq. (1) for a finite 
system occupying the space 0 ^ z ^ a is 

W ] = fo dz L ** K1 - MM -

- 0*(S,/JL) ff0(s,/JL)] - fidw 0*(O,jLL)[0(O,fi) -

- B(n)]+ dull </>*(«,li)<f>(a,!i) . (21) 

TABLE I 

1 - A (Normal Beam) 

c Rafalski Eq. (17) Exact 

0 1.000 1.000 1.000 
0.25 0.951 0.954 0.955 
0.35 0.924 0.929 0.930 
0.45 0.890 0.900 0.902 
0.55 0.848 0.864 0.865 
0.65 0.793 0.817 0.820 
0.75 0.720 0.754 0.752 
0.85 0.611 0.658 0.660 
0.95 0.409 0.462 0.464 
0.98 0.280 0.328 0.327 
0.99 0.207 0.247 0.247 
1.00 0. 0. 0. 

TABLE II 

1 - A (Isotropic) 

(18) 

c Eq. (20) Exact 

0 1.000 1.000 
0.10 0.980 0.978 
0.20 0.957 0.954 
0.30 0.929 0.926 
0.40 0.896 0.893 
0.50 0.856 0.853 
0.60 0.808 0.805 
0.70 0.746 0.743 
0.80 0.660 0.658 
0.90 0.523 0.522 
1.00 0. 0. 

The Euler-Lagrange equations and subsidiary 
conditions of Eq. (21) are again Eqs. (4) through 
(7) with the additional boundary conditions at z = a, 

<l>(a,n) = 0, ( - 1 « fi< 0) , 
0*(a,jLi) = 0, (0 < n « 1) . 

(22) 

(23) 
Thus Eq. (21) is a proper Lagrangian for the 
finite albedo problem. As was the infinite system 
Lagrangian, Eq. (21) is stationary about JiaP, 
where P is the absorption probability, but for a 
finite system (1 - P) is the sum of the albedo and 
the transmission probability. Hence this function-
al will not yield a stationary value for the albedo. 
A functional which is both a Lagrangian for the 
finite albedo problem and yields a stationary value 
for the albedo is 

= - fodz f_\dn6*(z,t±)H<p(z,n) 

- fi dw<t>*(0,n) [0(0,n) - £(H)] 

- dull [0(0,n) - 0*(a,|i)<MM] • (24) 
The Euler-Lagrange equations and boundary con-
ditions of this functional are 

and 

M { Z , N ) = 0 , ( - 1 « UL « 1) , 

0(0,n) = B(n), (0 < n * 1) , 

0(a,M.) = 0, (- 1 « n < 0) , 

ff*0* = 0, ( - 1 « JUL « 1) , 

0*(0,n) = 1, ( - 1 < n < 0) , 

</>*(a,n) =0, (0 < fx « 1) . 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

4C. W. MAYNARD, Nucl. Sci. Eng., 6, 174 (1959). 

Clearly this functional is stationary about JiaA. 
Hence Eq. (24) is a proper functional to use for 
the finite albedo problem. 
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For a large, but finite, system one would 
expect good results from again using asymptotic 
distributions (in this instance the sum of growing 
and decaying asymptotic exponentials) as trial 
functions. However, in a small system the asymp-
totic distributions would not become established 
and their use as trial functions would probably 
lead to large errors. Since in this situation one 
would expect the directional and adjoint direction-
al fluxes to be relatively flat (in space), a more 
appropriate trial function might be 

(j>(z,ii) 
N 

E Pniti*" (31) 

with an analogous adjoint trial function. In this 
case, one allows the variational method to deter-
mine the angular dependences of the trial func-
tions. This general approach to transport prob-
lems has been discussed elsewhere5. 
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Neutron Scattering by Polyethylene* 
FREQUENCY SPECTRUM 

Crystalline polyethylene is known to be formed 
by very long, kinked and only weakly interacting 
chains of CH2 radicals1'2. Therefore its frequency 
spectrum is radically different from the one cor-
responding to a three-dimensional crystal. In fact, 
analyzing its normal modes of vibration in terms 
of plane waves eik*r, the corresponding frequencies 
can only depend on the projection of the wave 
vector k on a direction parallel to the chains (at 
least to the extent that the interaction between 
neighboring chains can be neglected). In other 
words, for any direction of k, the frequency w de-
pends only on the phase difference 6 between the 

vibration of corresponding elements of two neigh-
boring radicals of the same chain. This depend-
ence, as calculated by Lin and Koenig1, is shown in 
Fig. 1 where the nine different branches (corres-
ponding to the three atoms in each radical) can 
be assigned to the following vibrational modes: 

T C-C-C-C torsion 
B C-C-C bending 
S C-C stretching 
R CH2 rocking 
Tw CH2 twisting 
W CH2 wagging 
lb H-C-H bending 
Ss H-C-H symmetric stretching 
As H-C-H antisymmetric stretching. 

Only two of these branches go to go = 0 for 0 = 0 
and can thus be considered as acoustical modes. 
The remaining ones are optical branches. This 
again shows very clearly the difference with a 
three-dimensional crystal for which the number of 
acoustical branches always is three. 

We shall consider only the optical part of Lin 
and Koenig's frequency distribution since the 
acoustical part is perturbed, at least near OJ = 0, by 
the weak coupling between neighboring chains. 
Because of this, at very low frequencies one must 
recover the typical GO2 behavior of a Debye crystal. 
Since a frequency spectrum is defined as the frac-
tion of modes per unit frequency interval, in our 
case we have 

/ M = c E 
dBj( y) 

db) : 

where c is a normalization constant and the sum is 
over all branches crossing the frequency oo. Hence 

/(co) becomes singular at all those points where 
= 0. A histogram of the spectrum obtained in 

uu 
this manner, but leaving out the C-C stretching 
branch as well as the acoustical branches, is 
shown in Fig. 2. The reason for leaving out the S 

•This work was supported by the USAEC under Con-
tract No. AT(04-3)-167, PA 2. 
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Fig. 1. Frequency dependence of the vibrational 
phase difference between neighboring CH2 groups (Lin 
and Koenig). 


