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Some Tests of Coveyou's Anisotropic 
Selection Technique* 

The application of R. R. Coveyou's anisotropic 
selection technique1 and its proper inclusion into 
the Monte Carlo neutron-transport code2 05R have 
been tested by several calculations and compari-
sons. The technique is the result of its origina-
tor's initial attempt to devise a scheme for 
choosing from an anisotropic distribution, and so 
there was no older, tried technique against which 
either its accuracy or its effect on machine time 
could be tested for arbitrary angular distribu-
tions. Problems for which analytic solutions 
exist offer a better test of the accuracy of the 
technique than do problems solved by another 
Monte Carlo method which is itself subject to 
error in any case. For this reason one-velocity 
problems with isotropic scattering in the labora-
tory system were chosen for study with the 
anisotropy being introduced in the center-of-mass 
system in such a way as to result in isotropic 
laboratory scattering. 

Beach et al.3 have solved various one-velocity 
neutron-transport problems with isotropic scat-
tering in the laboratory system by semianalytical 
methods. The problem chosen for comparison was 

*Research sponsored by the USAEC under contract 
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Atomic Energy Agency, Vienna, (1961). 

3L. A. BEACH et al., "Comparison of Solutions to the 
One-Velocity Neutron Diffusion Problem," NRL-5052 (Dec. 
23, 1957). 

the calculation of the flux from a plane isotropic 
source in a medium having a scattering cross 
section equal to half its total cross section. So 
that all parts of the code could be tested, the 05R 
calculations were made with constant cross sec-
tions, but with neutron slowing down permitted. 
The fluxes were obtained by a simple statistical 
estimation procedure which extended the path of 
a neutron from each collision point to the various 
planes at which the flux was desired, the contribu-
tion from each collision being given by 

W -!(*' 
171 * (1) 

where 
W = the statistical weight of the neutron 

after collision 
x' = the x coordinate of the plane at which 

the flux is to be estimated 
x = the x coordinate of the collision point 
X = the total mean free path 
JUL = the cosine of the angle between the 

neutron velocity vector and the x axis 
and the source is in the y-z plane at the origin. 

In order to isolate the systematic errors in-
herent in the Monte Carlo technique, the 05R 
calculations were made both for a medium whose 
scattering was isotropic in the center of mass and 
whose mass was 240, thus making the scattering in 
the laboratory system very nearly isotropic, and 
for a medium whose scattering was anisotropic in 
the center of mass. The latter medium was a 
half-and-half mixture of scatterers having masses 
of 2 and 3, each with a Ps approximation to the 
center-of-mass scattering angular distribution 
which yields an isotropic-laboratory distribution. 
The only reason for using a mixture rather than a 
single scatterer was to test the code's ability to 
handle mixtures of anisotropic scatterers. Two 
thousand neutrons were run for each case. 

The £-th Legendre coefficient in an expansion 
of the center-of-mass angular distribution for a 
scatterer of mass A which gives an isotropic lab-
oratory distribution is given by (4+l)/(2£+l)(-l/A)*: 
The center-of-mass angular distribution resulting 
from a P8 approximation for a mass 2 scatterer is 
given in Fig. 1, where the probability per unit 
cosine jP(JUL) is plotted as a function of the cosine of 
the center-of-mass scattering angle JLL. Also shown 
as vertical bars are the for the P8 approxi-
mation required by Coveyou's method. They occur 
at the roots of P9. It is somewhat startling to see 
the probability of selecting jm= 0.968 fall below that 
of selecting ju = -0.836 while F({j) is rising. This 
may be qualitatively seen by interpreting the <j)k's 
as the integral of F(fi) over some appropriate 
interval including the k-th root. As the roots 
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Fig. 1. A PQ approximation to the distribution func-
tion F(iu) for the cosine of the center-of-mass scattering 
angle n to give isotropic laboratory scattering for a 
mass 2 scatterer and the required by Coveyou's 
selection technique. 
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Fig. 3. A comparison of the angular distributions of 
scattered neutrons at zero mean free path from the 
source plane as computed by semianalytic and Monte 
Carlo methods. The curve is the semianalytic result; 
the points are Monte Carlo results. 
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Fig. 2. A comparison of one-velocity scattered fluxes 
due to plane isotropic source in an isotropic scatter-
ing medium ( Z s / Z t =0 .5) computed by semianalytic and 
Monte Carlo methods as a function of distance from the 
source. The curve is the semianalytic result; the points 
are Monte Carlo results. 

crowd closer together as I/JLI increases, the inter-
vals between the roots decrease so that the inte-
grals of -F(ju), the (pk's, may decrease even though 
F(jut) itself is increasing. The <j>k's for a uniform 
distribution will peak near or at JLL = 0, depending 
on whether the order of approximation is odd or 
even, and fall off symmetrically as ||LL| approaches 
unity. The values of the cosines of the center-of-
mass scattering angles, the angles themselves, 
and the 0^'s for mass 2 and mass 3 are given in 
Table I. 

Fig. 4. A comparison of the angular distributions of 
scattered neutrons at 0.5 mean free path from the source 
plane as computed by semianalytic and Monte Carlo 
methods. The curve is the semianalytic result; the 
points are Monte Carlo results. 
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Fig. 5. A comparison of the angular distributions of 
scattered neutrons at 1.0 mean free path from the source 
plane as computed by semianalytic and Monte Carlo 
methods. The curve is the semianalytic result; the 
points are Monte Carlo results. 

Fig. 6. A comparison of the angular distributions of 
scattered neutrons at 5.0 mean free paths from the 
source plane as computed by semianalytic and Monte 
Carlo methods. The curve is the semianalytic result; 
the points are Monte Carlo results. 

TABLE I 

The Cosine of the Center-of-Mass Scattering Angle, 
the Center-of-Mass Scattering Angle, and fa 

for Mass 2 and Mass 3 Scatterers 

Cosine of the 
Center-of-Mass 
Scattering Angle 

Center-of-Mass 
Scattering Angle 

(deg) 
fa (Mass 2) fa (Mass 3) 

0.96816 14.497 0.01828 0.02309 
0.83603 33.277 0.04243 0.05359 
0.61337 52.166 0.06710 0.08375 
0.32425 71.080 0.09164 0.11317 
0. 90.000 0.11849 0.14099 

-0.32425 108.920 0.14648 0.16452 
-0.61337 127.834 0.17834 0.17618 
-0.83603 146.723 0.19692 0.15810 
-0.96816 165.503 0.14032 0.08661 

TABLE H 

Comparison of the Multiplication Constants Computed by 
Various 05R Systems with Exact Results for Infinite 

Slabs, Infinite Cylinders, and Spheres 

Multiplication Constant® 

Infinite Slab 
(r = 2.1134 mfp)b 

Infinite Cylinder 
(r = 3.5783 mfp) 

Sphere 
(r = 4.8727 mfp) 

05R: 
One-velocity; 
isotropic 

0.979 ± 0.008 1.00 ± 0.01 0.991 ± 0.008 

05R: 
Fission spectrum; 
A = 15 000 

0.992 ± 0.009 0.980 ± 0.014 0.999 ± 0.013 

05R: 
Fission spectrum; 
(A = 2) + (A = 3) 

0.994 ± 0.010 1.010 ± 0.010 1.009 ± 0.008 

Exact 1.00 1.00 1.00 

aThe number of secondaries per'collision was arbitrarily taken as 1.1. 
b r = half thickness. 
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The fluxes calculated by the 05R code are 
compared, as a function of distance, in Fig. 2 with 
the scattered flux computed by Beach et al. One 
notes first that the 05R results are consistent with 
each other. The low 05R fluxes at distances 
greater than 6 mfp (mean free paths) demonstrate 
the characteristic Monte Carlo systematic error 
mentioned above and are caused by an insufficient 
number of neutrons penetrating to distances far 
from the source. The high values of 05R results 
compared with those of Beach et al. at the origin 
are no doubt due to the contribution of a few 
neutrons having very small values of ju in Eq. 1. 

The angular distributions of scattered neutrons 
at 0, 0.5, 1, and 5 mfp from the source plane are 
compared with the results of Beach et al. in Figs. 
3-6, respectively. The 05R results are averages 
over a 0.1 interval in /!, plotted at the midpoint of 
the interval. Noticeable in the data for the mixture 
of light scatterers is the large contribution in the 
0 to 0.1 interval adjacent to the source plane 
due to the contributions of low-jut neutrons. The 
semianalytic result, of course, goes to infinity at 
the source plane. In all cases of 05R results are 
consistent. Agreement with the semianalytic r e -
sults is good to 1 mfp, and not really poor even at 
5 mfp. At this depth, of course, the agreement is 
considerably better for positive fi than for negative 
jut, since so few neutrons penetrate deeply into the 
medium and are scattered back toward the origin. 

The error bars shown on some of the points 
are consistent for both media and represent the 
standard deviation computed from the relation 

a = F n 

puting a multiplication constant. The second con-
sidered a scattering medium having a mass of 
15 000 with isotropic scattering in the center-of-
mass system but introduced the neutrons in a 
fission spectrum. This calculation, by comparison 
with the first, tested the equivalence of the 
constant cross-section one-velocity and multi-
velocity cases on 05R. The third calculation 
was the test of the anisotropic scattering treat-
ment. The medium was a half-and-half mixture of 
scatterers having masses of 2 and 3, with each 
having a P8 approximation to the center-of-mass 
distribution which yielded an isotropic angular 
distribution in the laboratory system. At least 20 
iterations of 400 histories each were performed in 
each calculation, with the first five being dis-
carded in the computation of the multiplication 
constant to permit spatial convergence of the 
source distribution. 

The results of the calculations are compared 
with the exact results in Table II. The calculations 
testing the anisotropic-scattering selection tech-
nique, those for the {A = 2) + (A = 3) mixture, are 
consistent with the other 05R results and are in 
agreement with the exact results. 

The consistency of the anisotropic-scattering 
medium results obtained with the Monte Carlo 
calculations and the demonstrated agreement with 
semianalytic and exact results indicate that Cove-
you's selection technique is appropriate and has 
been properly incorporated into the 05R code. 

W. E. Kinney 

where W = the neutron weight and N' = the total 
number of source neutrons. 

A second test of the anisotropic-scattering 
selection technique was the calculation of the 
multiplication constant for one-velocity neutrons 
in infinite slabs, infinite cylinders, and spheres of 
media having isotropic scattering in the laboratory 
system. Exact results for such problems have 
been tabulated by Carlson and Bell4. The number 
of secondaries per collision was arbitrarily taken 
as 1.1 for the comparison. 

Three calculations were performed for each of 
the configurations. The first was a strictly one-
velocity problem with isotropic scattering in the 
laboratory system. This was intended to evaluate 
the accuracy of the Monte Carlo method in com-

4B. G. CARLSON and G. I. BELL, "Solution of the 
Transport Equation," P/2386, Proc. U. N. Intern. Conf. 
Peaceful Uses Atomic Energy, 2nd, Geneva, (1958). 
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The Albedo Problem 

In a recent note, Rafalski1 has considered the 
problem of computing the probability that a 
neutron will be reflected (the albedo) if it is 
perpendicularly incident on a semi-infinite half-
space. His method of solution consisted of intro-
ducing an approximation into the integral trans-
port equation describing the problem and led to a 
simple analytic result for the albedo. We show 
that the application of the variational method to 
this problem also leads to a simple analytic ex-
pression for the albedo and that this expression is 
significantly more accurate. Exact formulations 

*P. RAFALSKI, Nucl. Sci. Eng., 19, 378 (1964). 


