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in graphite has been measured or inferred. It was 
my intent in a letter to the editor1 to demonstrate 
that the pulsed-neutron method and the poison 
method yield consistent values, as they should, 
since the (A, Bg2) space in the pulsed-neutron ex-
periment can be considered as an extension of the 

1/L2) space in the poison experiment. This 
agreement is to be expected because both methods 
rely primarily upon diffusion theory, with similar 
assumptions, inferences and restrictions applying 
to both cases. I assumed Xt to be the Maxwellian 
average of the transport mean free path in the in-
finite medium, while the CB4 term corrects for 
deviations from Maxwellian spectrum in the finite 
medium. 
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A Monte Carlo Technique for Selecting 
Neutron Scattering Angles from 

Anisotropic Distributions* 

The angular distributions of elastically scat-
tered neutrons become anisotropic in the center-
of-mass system at neutron energies above about 
100 keV, the degree of anisotropy increasing with 
neutron energy. For many problems in neutron 
transport at such energies, a satisfactory solution 
is obtained by taking account of the anisotropy is 
only an approximate fashion. Diffusion theory, for 
example, accounts approximately for anisotropy 
by the use of the transport cross section, £ - jCTSs, 
where S is the total cross section, is the 
elastic scattering cross section, and p" is the 
average cosine of the laboratory scattering angle. 
For some problems, however, a more accurate 
treatment of anisotropic scattering is required. 
Calculations of neutron distributions deep within 
thick shields or, at the other extreme, in very 
small critical systems are examples of such 
problems. 

When the Monte Carlo method is used to solve 
neutron-transport problems, angular distributions 
can be included to as high a degree of accuracy as 

•Research sponsored by the USAEC under contract 
with the Union Carbide Corporation. 

desired; however, in general, the higher the 
degree of accuracy demanded the more costly the 
solution, since the selection of a scattering angle 
becomes an elaborate procedure and requires a 
large amount of computer time. A selection 
method is presented here which gives the same 
accuracy as that obtained by a straightforward 
selection from a Legendre expansion but requires 
considerably less computer time. 

Express the distribution function, F(fjt)f of the 
cosine of the scattering angle, y , as the Legendre 
series 

m = e &i) + f ; ^ / . A W , 
£=0 *=«+1 

( i ) 

where 

U = S\F(n)P, (n)dn, (2) 

but only the first sum is known, while the sum of 
the remainder of the terms from n + 1 to infinity 
is unknown. Consider a second distribution func-
tion G(fji) given by 

G(n) = E 0 * 0 01-0*) . (3) 
k~o 

Expanding the 6-function gives 

G(u) = i h i t ^ i 1 P t ( 0 k ) P t ( n ) l 
k=0 ( £=0 ) 

= E ^ M E + (4) 
£=o v k =0 ; 

+ £ ^ i 1 1 £ • 
£=» +1 [k=0 J 

Now if one sets 

/£= £ *kPt(0k) , (5) 
k = 0 

Eq. 4 and Eq. 1 are identical; hence they are good 
to the same order of approximation when both are 
truncated at n. 

To find the multiply Eq. 5 by ?4pLP|(0.) 
and sum over H from 0 to n 

t ^ t ^ 1 p t f j p i w ' i 2JiLfiPm-
k-Q £=0 £=0 

(6) 

As shown in Appendix A, 
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£=o 

n + 1 Pn + M') Pn(v) =P„(v ' )P„+ x(m) 
ll-fl 

Note that this may yield negative weights, a 
situation which under some circumstances may 
give a negative value for an estimate. This 
indicates that an insufficient number of samples 
have been taken or that a higher order approxi-
mation is required. 

(7) 
APPENDIX 

Now let the n + 1 values of 6k be the roots of DERIVATION OF THE ORTHOGONALITY RELATION 

n-fl 

Pn+1(h)=o • 

Then, from Eq. 7, 

E ^ PM pt(e,) = o, 
t =0 

if k t j . 

So Eq. 6 gives 

(8) 

(9) 

Consider the term 

7 = (21 + 1) P M P t ( u ) in' - M) 

= (21 +1) [p,(|i) n' Pt(n') - Pt(n') u Pf(fi)] . 

(AI) 
This expression can be rewritten using the recur-
sion relationship 

E ^^fiPtie,) 
t = o 1 

V U + 1 
** 2 £ = 0 

Pt(9j) 

Note that if F(n) is normalized, then 

f_1iF(u)du = l = E h • 
k=o 

Ui'Pi(u') jU + D J,«+i(n') + ii,1-i(n') 

to get 
(10) I = Pln) [(I + IJP^M + ip^Gz')] -

-pt(u) [ d + i ) p t + 1 w + ip, . 1 (H)] 

= (1 + 1) [ > f + 1 &x') Pt(n) - Pin') P t + 1 (n)] -

- 1 [pt(n') P ^ (|u) - P t_! (u') Pt(fi)] 

(A2) 

If all the <bk's are positive, then a value of n is 
selected from one of the 0k's by choosing a =jt(fi',fx) - jl.1(fJ.', 
random number, R, and letting u = 0y, if 

(A3) 
where 

M / 
E H < R < E H . 

k= 0 k-0 
( 1 1 ) J » ) = (1 + 1 ) [ P 1 4 1 (u') p/u) - Pt(n') P F + I 0 4 ] 

If any of the are negative, the selection W e g u m b Q t h g i d e g Qf £ A 3 tQ 
technique is modified to select n from 

(A4) 

P ' M = E - U) , 
k = 0 

where 

(12) 

(13) 

(W' - IS) E ( 2 1 + 1 ) P /FX ' ) PF((I) = 
4=1 

4=1 

E \H\ 
k = o 

and the neutron statistical weight is multiplied by 
the ratio 

= E = E 
1=1 t = o 

= JnWfti ' M) • (A5) 

F(n) 
TdTY 

„ <l>k 
Hence 

(14) 

Oi 
in' - n) E ( 2 £ + « W ) PM = , ( A 6 ) 

l=o 
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or 

E (21+1 ) P t ( n ' ) P M 
i=Q 

[PnJn')Pn(n)-Pn(u') Pn+1(u) 
= (n +1) 7 

u - u 

(AT) 

R. R. Coveyou 

which is Eq. 7. 
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Some Tests of Coveyou's Anisotropic 
Selection Technique* 

The application of R. R. Coveyou's anisotropic 
selection technique1 and its proper inclusion into 
the Monte Carlo neutron-transport code2 05R have 
been tested by several calculations and compari-
sons. The technique is the result of its origina-
tor's initial attempt to devise a scheme for 
choosing from an anisotropic distribution, and so 
there was no older, tried technique against which 
either its accuracy or its effect on machine time 
could be tested for arbitrary angular distribu-
tions. Problems for which analytic solutions 
exist offer a better test of the accuracy of the 
technique than do problems solved by another 
Monte Carlo method which is itself subject to 
error in any case. For this reason one-velocity 
problems with isotropic scattering in the labora-
tory system were chosen for study with the 
anisotropy being introduced in the center-of-mass 
system in such a way as to result in isotropic 
laboratory scattering. 

Beach et al.3 have solved various one-velocity 
neutron-transport problems with isotropic scat-
tering in the laboratory system by semianalytical 
methods. The problem chosen for comparison was 

*Research sponsored by the USAEC under contract 
with Union Carbide Corporation. 

*R. R. COVEYOU, " A Monte Carlo Technique for Select-
ing Neutron Scattering Angles from Anisotropic Angular 
Distributions," Nucl. Sci. Eng. this issue, p. xxx. 

2R. R. COVEYOU, J. G. SULLIVAN and H. P. CARTER, 
Codes for Reactor Computations, p. 267, International 
Atomic Energy Agency, Vienna, (1961). 

3L. A. BEACH et al., "Comparison of Solutions to the 
One-Velocity Neutron Diffusion Problem," NRL-5052 (Dec. 
23, 1957). 

the calculation of the flux from a plane isotropic 
source in a medium having a scattering cross 
section equal to half its total cross section. So 
that all parts of the code could be tested, the 05R 
calculations were made with constant cross sec-
tions, but with neutron slowing down permitted. 
The fluxes were obtained by a simple statistical 
estimation procedure which extended the path of 
a neutron from each collision point to the various 
planes at which the flux was desired, the contribu-
tion from each collision being given by 

W -!(*' 
171 * (1) 

where 
W = the statistical weight of the neutron 

after collision 
x' = the x coordinate of the plane at which 

the flux is to be estimated 
x = the x coordinate of the collision point 
X = the total mean free path 
JUL = the cosine of the angle between the 

neutron velocity vector and the x axis 
and the source is in the y-z plane at the origin. 

In order to isolate the systematic errors in-
herent in the Monte Carlo technique, the 05R 
calculations were made both for a medium whose 
scattering was isotropic in the center of mass and 
whose mass was 240, thus making the scattering in 
the laboratory system very nearly isotropic, and 
for a medium whose scattering was anisotropic in 
the center of mass. The latter medium was a 
half-and-half mixture of scatterers having masses 
of 2 and 3, each with a Ps approximation to the 
center-of-mass scattering angular distribution 
which yields an isotropic-laboratory distribution. 
The only reason for using a mixture rather than a 
single scatterer was to test the code's ability to 
handle mixtures of anisotropic scatterers. Two 
thousand neutrons were run for each case. 

The £-th Legendre coefficient in an expansion 
of the center-of-mass angular distribution for a 
scatterer of mass A which gives an isotropic lab-
oratory distribution is given by (4+l)/(2£+l)(-l/A)*: 
The center-of-mass angular distribution resulting 
from a P8 approximation for a mass 2 scatterer is 
given in Fig. 1, where the probability per unit 
cosine jP(JUL) is plotted as a function of the cosine of 
the center-of-mass scattering angle JLL. Also shown 
as vertical bars are the for the P8 approxi-
mation required by Coveyou's method. They occur 
at the roots of P9. It is somewhat startling to see 
the probability of selecting jm= 0.968 fall below that 
of selecting ju = -0.836 while F({j) is rising. This 
may be qualitatively seen by interpreting the <j)k's 
as the integral of F(fi) over some appropriate 
interval including the k-th root. As the roots 


