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TABLE I 

Transport Averages 

Parameter Carbon Water 

X, 0 . 9 9 9 5 Xo 1 . 0 7 4 Xo 

Ytv' 
V 

0 . 9 9 1 7 Xo 1 . 2 1 8 Xo 

( X V 0 . 9 9 7 5 Xo 1 . 0 9 3 Xo 

\tv 
The second average, , is also the flux-

weighted average of \t. In the case of 
carbon the averages agree within one per-
cent. 

the material and leakage (not the geometric) 
1 27f2 

bucklings, B 2 = - - y r + —r~ \ however, this ex-
L CI 

pression has not been derived rigorously. 
Probably the best approach would be to correct 

all the diffusion lengths directly to the room-
temperature spectrum. The diffusion equation, 
D0V2n -nvHa = 0 can also be corrected for spec-
tral changes and becomes 

(Do -CBe2)V2n -nvZa = 0 , 

= 0 , 
n (\ C B * \ 

r2 _ Do-CBe2 _ " Do /_ r 2 L CBez\ 
L ~ vTla = = L o V 

where L0 is the diffusion length for a Maxwellian 
spectrum at room temperature. For infinite 

2 1 geometry, where it is agreed Be = — t h e 
L 

usual relationship 

D0 vXa \ Dq > 

can be obtained. 
In addition, the extrapolation length measure-

ments exhibited a reasonably constant behavior as 
a function of copper poison and are inconsistent 
with a 5.4% decrease in \t because of diffusion 
heating. 

At Hanford, diffusion length measurements 
have been made in a heated graphite stack coupled 
to a thermal column3. Since 

r-2 ^ 

L2 should vary as ^ or T ! if and v are 
constant. The best fit to the measurements was 

3R. C. LLOYD, E. D. CLAYTON and C. R. RICHEY, 
Nucl. Sci. Eng. 4, 5, 690-697 (1958). 

L 2 ~ T°- 4 8± °'01 or X, - T - o . o 2 ± o.oi ^ I n t h e 

poison experiments, if X/ is assumed constant, 
v =v0(l--j^-Be2J where v is the actual mean 

velocity of a stack and v0 is the Maxwellian 
averaged velocity at room temperature. In the 
most heavily poisoned case the mean velocity 
would be about 0.3% greater than the room 
temperature average, or the effective temperature 
0.6% greater. (For an infinite geometry the 
effective temperature is 1.0% greater than am-
bient.) This will cause a negligible change in X/. 
It should be pointed out that the poison measure-
ments in carbon permit determination of X, by two 
equations: (a) A l = 0.7104 x, where AX is the 

extrapolation distance and (b) Do = ^ r where 77- is o Do 
the slope of the versus Za poison curve. The 

L 
extrapolation value of 2.74 ± 0.03 cm is in good 
agreement with the value derived from the cop-
per-poison D0. The pulsed Do values, however, 
are consistently low. (J> \-0. 02 

—J , averages 
involving X, are given over a Maxwellian spec-
trum, 

n(T)dT — ———-3 e'~h T* dT . (3) 
(wTo)* 

For comparison, averages are given for water at 
a density of 1.0 g/cm3 where L2 ~ T0'87 o r 
X, = Xo(T/T0)0'37, is assumed4 and Xo is the trans-
port mean free path at 0.025 eV. The transport 
mean free path at the mean velocity, (x)~ is also 
included. 
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Reply to Remarks by J. A. DeJuren on 
"A Note on the Measurement of the 

Transport Mean Free Path of 
Thermal Neutrons in Graphite 

by a Poison Method" 

There are at least five methods by which the 
transport mean free path of thermal neutrons, Xj,, 
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in graphite has been measured or inferred. It was 
my intent in a letter to the editor1 to demonstrate 
that the pulsed-neutron method and the poison 
method yield consistent values, as they should, 
since the (A, Bg2) space in the pulsed-neutron ex-
periment can be considered as an extension of the 

1/L2) space in the poison experiment. This 
agreement is to be expected because both methods 
rely primarily upon diffusion theory, with similar 
assumptions, inferences and restrictions applying 
to both cases. I assumed Xt to be the Maxwellian 
average of the transport mean free path in the in-
finite medium, while the CB4 term corrects for 
deviations from Maxwellian spectrum in the finite 
medium. 
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A Monte Carlo Technique for Selecting 
Neutron Scattering Angles from 

Anisotropic Distributions* 

The angular distributions of elastically scat-
tered neutrons become anisotropic in the center-
of-mass system at neutron energies above about 
100 keV, the degree of anisotropy increasing with 
neutron energy. For many problems in neutron 
transport at such energies, a satisfactory solution 
is obtained by taking account of the anisotropy is 
only an approximate fashion. Diffusion theory, for 
example, accounts approximately for anisotropy 
by the use of the transport cross section, £ - jCTSs, 
where S is the total cross section, is the 
elastic scattering cross section, and p" is the 
average cosine of the laboratory scattering angle. 
For some problems, however, a more accurate 
treatment of anisotropic scattering is required. 
Calculations of neutron distributions deep within 
thick shields or, at the other extreme, in very 
small critical systems are examples of such 
problems. 

When the Monte Carlo method is used to solve 
neutron-transport problems, angular distributions 
can be included to as high a degree of accuracy as 

•Research sponsored by the USAEC under contract 
with the Union Carbide Corporation. 

desired; however, in general, the higher the 
degree of accuracy demanded the more costly the 
solution, since the selection of a scattering angle 
becomes an elaborate procedure and requires a 
large amount of computer time. A selection 
method is presented here which gives the same 
accuracy as that obtained by a straightforward 
selection from a Legendre expansion but requires 
considerably less computer time. 

Express the distribution function, F(fjt)f of the 
cosine of the scattering angle, y , as the Legendre 
series 

m = e &i) + f ; ^ / . A W , 
£=0 *=«+1 

( i ) 

where 

U = S\F(n)P, (n)dn, (2) 

but only the first sum is known, while the sum of 
the remainder of the terms from n + 1 to infinity 
is unknown. Consider a second distribution func-
tion G(fji) given by 

G(n) = E 0 * 0 01-0*) . (3) 
k~o 

Expanding the 6-function gives 

G(u) = i h i t ^ i 1 P t ( 0 k ) P t ( n ) l 
k=0 ( £=0 ) 

= E ^ M E + (4) 
£=o v k =0 ; 

+ £ ^ i 1 1 £ • 
£=» +1 [k=0 J 

Now if one sets 

/£= £ *kPt(0k) , (5) 
k = 0 

Eq. 4 and Eq. 1 are identical; hence they are good 
to the same order of approximation when both are 
truncated at n. 

To find the multiply Eq. 5 by ?4pLP|(0.) 
and sum over H from 0 to n 

t ^ t ^ 1 p t f j p i w ' i 2JiLfiPm-
k-Q £=0 £=0 

(6) 

As shown in Appendix A, 


