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Cos 00 Source Scatterer b 

0.500 Co60 Fe 0.0070 
V V Al 0.0085 
V V Concrete 0.0085 
V Cs137 Fe 0.0091 
V V Al 0.0132 
V V Concrete 0.0133 

0.750 Co60 Fe 0.0080 
V V Al 0.0113 
V V Concrete 0.0107 
V Cs137 Fe 0.0120 
V V Al 0.0167 
V V Concrete 0.0165 

1 . 0 0 0 Co60 Fe 0.0078 
V V Al 0.0114 
V V Concrete 0.0117 
V Cs137 Fe 0.0130 
V V Al 0.0194 
V V Concrete 0.0184 

Fig. 1. The quantity Ad-b (see text) plotted versus 
Compton scattering angle 9S, in radians. The points repre-
sent experimental data taken for the various conditions 
listed on the figure, and the smooth line is the function 

A USNRDL technical report is in preparation 
which gives the full details of the above note as 
well as a description of the dose albedo experi-
ment, a tabulation of its results, and a comparison 
with the Raso1 results as modified by the Chilton-
Huddleston2 semi-empirical formula. 
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A N o t e on the Analysis of Pulsed 
Neut ron Shutdown M e a s u r e m e n t s 

The reactivity of a subcritical reactor is fre-
quently determined by injecting bursts of fast 
neutrons and measuring the decay constant of the 
fundamental flux mode The reactivity is 
related to by the expression: 

where fo is the effective delayed-neutron fraction 
and Ax is the generation time. Garelis and 
Russell1 have shown that the term /3i/Ai (or 
kfii/h) can be determined from the shape of the 
measured pulse using the expression: 

y.oo /~Q. \ roo Nd 

o Np-e^-r)dr-fo N.-dr-—, (2) 
where Np is the prompt contribution to the neu-

tron density 
Nd is the effectively constant 'delayed' 

neutron contribution 
r is the time after a pulse 
R is the repetition rate. 

The analysis leading to this expression1 was lim-
ited to a bare slab core with only one neutron 
energy group; this last restriction probably is the 
most severe since it leads to very simplified ex-
pressions for the multiplication constant and life-
time. The alternative analysis outlined below 
provides an approximate treatment of the energy 
variable and defines the terms involved. It is 

lE. GARELIS and J. L. RUSSELL, Jr., Nucl. Sci. Eng., 
16, 263-270 (1963). 
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shown that Eq. (2) is strictly correct for only the 
fundamental spatial mode and for moderate shut-
downs, although it may be sufficiently accurate for 
many applications. 

The time-dependent diffusion equation for a 
uniform slab reactor is: 

D{u) - V{u)F + f°° du' \xs(uf-+u) + 
ox J 0 L 

+ s ( x , u , t ) + 1 h C i { x , t ) f i { u ) , 

(3) 
where 

dCi(x,t) i roo 
g j — J 0 du'-i/iu'tefiu'faFiXiU'it) -

- KCi(x,t) . (4) 
Here F = F(x,u,t) is the neutron flux at point x 

and time t for neutrons of 
lethargy u 

Y,(u) is the total macroscopic cross 
section for absorption and 
scattering. 
is the macroscopic cross sec-
tion for scattering from leth-
argy uf to lethargy u 

£/ is the fission cross section 
v(u) is the number of neutrons 

emitted in a fission process 
induced by neutrons of leth-
argy u 

f(u) and fi(u) are the energy spectra of 
prompt and i-th group delayed 
neutrons respectively, nor-
malised to unity for the inte-
gral over all lethargy 

Ci(x, t) and X* are the concentration and de-
cay constant for the i-th group 
of delayed neutron precursors 

Pi is the delayed neutron fraction 
for group i and /3 = S & i 

v(u) is the speed of neutrons of 
lethargy u 

A0 is an eigenvalue, equal to unity 
in this case, but introduced for 
consistency with Eq. (7) below. 
k0 can also be used to allow 
for any bias in the constants 
as determined from critical 
size calculations. 

If the source is considered to be a series of 
delta functions in time injected at a rate of R/sec, 

then between the pulses the neutron flux and pre-
cursor concentrations satisfy Eqs. (3) and (4) with 
S(x,u,t) set equal to zero. F(x,u9t) and Ci(x,t) 
can be expanded in terms of the eigenfunctions of 
the bare slab core, ipn{x), i.e. 

oo 

F(x,U,t)= 2 ®n{u,t)-ipn(x) 
n =1 

and Ci{x,t) = £ Cin(t)^n(x) , 
n=l 

and the equations for the n-th mode coefficients 
are now: 

-D(u)Bn2$n(u,t) - E ( W ) < M M ) + 

+ f°°dur \zs{u'->u)+-^ f(u)v{uf)Xf(uf)(l - 0)1 x 
O L A0 J 

X *„(«', t) + E \CiniDfiiu) = ± ( 5 ) 

dCin{t) 
dt •j- f°° du' • i/(«')2/(«')&*,(«',*) -\Cin{t) 

(6) 
where Bn is the n-th mode geometric buckling 
defined in the usual manner. 

If only a single neutron pulse is considered, the 
neutron spectrum of each spatial mode will vary 
with time until it reaches an equilibrium spectrum 
in a time of the order of the greatest delayed neu-
tron half-life (i.e., ~ 56 sec). However, if the 
reactor is pulsed continuously for a time long 
compared to 56 sees, with a repetition rate, R, 
much greater than the largest X* (i.e., R » 3.00 
sec"1), then the neutron flux will consist of an 
approximately constant'delayed' neutron contribu-
tion and a time-dependent prompt neutron contri-
bution. The energy spectrum of the prompt 
contribution to each mode will now reach the 
equilibrium spectrum in a time of the order of the 
generation time (A) after a pulse, since after this 
time all the neutrons present will be the products 
of core fissions. The spectrum of the 'delayed' 
tail will also be approximately the same as that of 
the prompt contribution provided the reactor is not 
too shutdown, i.e., l-p I < 15% bk/k. This is be-
cause the delayed tail consists of not only delayed 
fission neutrons but also their progeny, and the 
latter will predominate if there is appreciable 
multiplication. Consequently, after about a gener-
ation time, the n-th mode flux will be separable 
into functions of lethargy and time, i.e. 

<MM)= M " ) • Tn(t). 
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Equation (2) is deduced below assuming that this 
separation holds for all values of the time. This 
assumption is discussed further at the end of this 
letter. 

The source-free stationary adjoint function for 
each mode 0w*(w) will now be defined for a hypo-
thetical reactor of the same composition as the 
actual reactor, but with the eigenvalue adjusted 
to give a stationary situation. The adjoint is de-
fined by: 

-D(u)Bn2 (j>„* (u) - Z(u)(j)n*(u) + 

roo / du' ; (U—*Ur) + 

(7) 

dTn Pn - Pn 
dt A„ Tn + 2 Cin 9 (8) 

Pin = y - '7T J°° du'fi(u)<j)n*(u)' f°°dur - v { u r ) : Xo Gn Jo 

x Zf{ur)(j)n(ur)9 

where 

G n = f J ^ W - f i + X f i W P i ] >< 

x i/(M f)S/(M f)0»(w f)0«*-(w) ' d u • d u ' ; 

C in A nGn 
f u du • Cin{t)fi{u)(j>n* {u) 

A n = ~ / U d u v(u) 

2A. F. HENRY, Nucl. Sci. Eng3, 52-70 (1958). 

It should be noted that the definition of G n iS 
arbitrary, and has been chosen so that the n-th 
mode reactivity is now defined by: 

- Ao K - 1 
x„ if x0 = 1 

which in the case of the fundamental is the conven-
tional definition of reactivity. The Ai used here 
is the eigenvalue that would be obtained from a 
solution of the stationary diffusion equation. Mul-
tiplying Eq. (6) by <t>n*(u)fi(u) and integrating over 
u gives: 

dc-ml, in Pi 
dt An ' T n ' X i Ci (12) 

This equation is the same as the diffusion equa-
tion for <j)n(u) except that u and uf have been 
interchanged in the source terms in the square 
brackets. 

Following the method of analysis given by 
Henry2, multiply Eq. (5) by and integrate 
over u and then subtract Eq. (7) first multiplied 
by 0»(w) • T n ( t ) and then integrated over u . This 
leads to: 

Equations (8) and (12) have the same form as the 
conventional point kinetics equations. _ 

The numerical values of A n and fiin can be 
calculated by perturbing the hypothetical stationary 
reactor. A n is equal to the reactivity change Ap 
produced by adding a negative unit 1/v absorber, 
and Pin is equal to the reactivity change produced 
by adding Xofi(u)Piv(ur) to the source of neutrons 
of lethargy u produced per fission, i.e. 

f { u ) ( 1-/3) +Efi(u)Pi v{u')\ = ^ofi(u)pi v(ur), 

where pn = S pin is the effective delayed-neutron i _ 
fraction for the n-th mode and pjn is given by: 

where Aw is the eigenvalue of the unperturbed 
hypothetical stationary reactor for the n-th mode. 

Since it is assumed that R » A*, the delayed 
neutron precursor concentrations will be approxi-
mately independent of time, and the solution of Eq. 
(8) is 

Tn = An exp(- a„ r) + En , 

(9) 

(10) 

where 

and 

r = 0. 

<xn 
Pn-Pn 

En = — 'T,XiCin • U-n 

(13) 

(14) 

(15) 

r is the time after a pulse at time 

Cin is the effective precursor concentration given 
by 

l 

and A„ is the n-th mode generation time, defined 
by 

Providing R « o?i the prompt contributions from 
different pulses do not overlap and the solution 
need be carried out for only one pulse, the contri-
bution from M pulses being M times the value 
given here. 

Equation (14) shows that for the fundamental 
mode: 

( I D 
which is Eq. (1). 

Separating T „ into prompt (Tp n ) and delayed 
(Tdn ) contributions gives 
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and 

Tpn = An exp(- an r) 

Tdn ~~ En ~ * 2 ^-i Cin 

(16) 

(17) 

The expression for Tdn can be simplified by using 
Eq. (12) which shows that: 

Hn T„ T - J L . t x r - f i . l i 
l d n ~ a n t ' i n ~ K otn ' 

(18) 

where T„ is the average value of Tn given by: 
fi/R , . RA„ T / Y~| 

Consequently, if R « an for all n, the exponen-
tial can be set equal to zero, giving 

- _RAn 
Tn - — + Tdn . (19) 

Inserting this value into Eq. (18) and solving for 
Tdn gives: 

RA„ >]}„/An 

Tdn -

an(o>n - Pn/A„) 
(20) 

Following the procedure of Ref. 1, define the inte-
grals and I 2 by: 

i ri/R 

ln = J Tpn dr J Tpn dr since R « an 

In2 = / o l / R Tpn • ex^T)dT^fo°°Tpn • exp(^- r) dr. 

Then using Eq. (16) for Tpn , 
J2 , i . ^ - ^ / A , ln ~ ln ~ , — . 

Vn(cXn - 01 ./A i ) 
(21) 

order of the generation-time after a pulse, and it 
is difficult to assess the error. However, when 
the results of an actual experiment are inserted 
into Eq. (23) the effect on the left-hand side of the 
equation is negligible since the integrals cancel 
for small values of r. It can be shown using Eq. 
(16), and considering only the fundamental mode, 
that the contribution to the left-hand side for 
times less than Ax is expected to be only a frac-
tion ~ | Pi of the total contribution. It can also 
be shown by a similar method that only a fraction 
~ px of the total background would be expected to 
be attributable to fissions occurring at times less 
than Ax after a pulse. Consequently, the actual 
pulse shape can differ significantly from the as-
sumed pulse shape for times less than Ax without 
causing an appreciable error, at least for negative 
reactivities up to about 15% 6k/k . 

A second assumption made in deriving Eq. (23) 
was that /3W/AW is independent of mode number n. 
This ratio is given by Eqs. (9) and (11) as: 

Pn _ 

An ~ 

^fH,du'>v(u')Zf(u')<i>n{u')- [ E f t / dwfiiu^n+iu)j 

L d u <$>n(u)<t>n*W 
v ( u ) 

It can be seen that I n 2 - In x equals Tdn/R _when 
n - 1. K i t is assumed for the moment that fin/An 

equals /31 /A1 , then 

o i Tdn 
In" " = 1 T ( 2 2 ) 

for all modes. 
If Eq. (22) is multiplied by <j)n(u) • ipn(x) and by 

the interaction cross section of an in-core neutron 
detector, then integration over lethargy, and sum-
mation over all modes, gives: 

roo /~Q \ roo Nd 

Jo N p d T = T ' (23) 

which is the relation given by Garelis and Russell1. 
Equation (23) has been derived for an idealized 

pulse shape in which it is assumed that the flux is 
separable into functions of lethargy and time. As 
discussed above, this is not true for times of the 

and will change with mode because of the different 
leakage terms in both the flux and adjoint equa-
tions. For a very large reactor, the ratio may not 
change greatly for the first few harmonics, while 
in the case of a small reactor the higher harmonics 
usually decay so rapidly that they do not appreci-
ably affect the terms of Eq. (23) provided the 
source and detector locations are suitably chosen. 
However, it is necessary to examine experimental 
results to verify that Eq. (23) is valid. A similar 
conclusion can be reached from the analysis of 
Ref. 1 if (3 is assumed to be a function of mode. 

The analysis presented above shows that pulsed 
neutron shutdown measurements made in cores 
that can be considered as effectively uniform and 
unreflected can be analyzed by the Garelis and 
Russell method, provided the terms of Eq. (23) are 
not appreciably affected by spatial harmonics. It 
is also shown that the deduced negative-reactivity 
values can be directly related to the eigenvalue of 
the stationary diffusion equation. 
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