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(8a) 

where 

odd 
= 

odd 

We denote 
Aa(n)=A+(n) 

Ah(n)=A-(- n) 

(8b) 

(9) 

ip+(z,n) = ~ </>U). (11) 

The functional given by Equation (10) takes the 
form: 

§(«(&))' - |(4>(«))z + ot(b)Ab + o<j>(a)Aa (12) 

Aa = f1 d\l jut (fi) J 0 

Aj = f1 d\i n Ab(fi) . 
J a 

(13) 

Now it is seen that Equation (6) with the 
boundary conditions (8a,6)is completely equivalent 
to Equation (1) with the boundary conditions (la,b). 

To get the total directional flux we use Equa-
tions (5) and (2). It is now easy to construct the 
functional which if set to be stationary would give 
Equation (6) as the Lagrange-Euler equation and 
Equations (8a,6) as subsidiary conditions. 

It will be 

+ CC72 2 (2n+ l ) f„P„(^ + ( z 9 n) . 
even 

f'dn'Pni^^n') J o 

- E B - U ^ n . P . W ^ J f 

- 2(7 fidiivip+(b,ii)^ip(b,ii) - JMjx)] 

- 2or f*dn Iiip+(a,n)^ip+(a, fi) - Aa (/ut)J . (10) 

In the similar way one could have obtained the 
self-adjoint equation for ip~(z, iu ) and the corres-
ponding functional. 

By way of illustration, let us take the trial 
function 

Setting the functional given by Equation (12) sta-
tionary we get the diffusion equation 

-cHM-o (14) 

and the boundary conditions 

- f - 1 = u 6(7 1 - cf1 dz 

j - i b ) = m i i m > i = I b . (15) 
u 6a 1 - cfi dz b 
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Evaluation of Albedo of Neutrons 
for Slab Wall 

INTRODUCTION 

Let us consider a neutron beam incident upon a 
wall. After collisions in the material of the wall, 
a fraction of the neutrons of the beam will be re-
flected. The effects of scattering in the wall will 
be estimated by consideration of multiple scatter-
ing. The ratio of the current of neutrons emerging 
from the surface of the wall to the incident current 
is called the albedo. 

In this derivation we will assume that the scat-
tering is isotropic and that there is no appreciable 
energy degradation of neutrons. 

SEMI-INFINITE WALL 

Let us have a parallel beam of neutrons of 
strength J0 incident upon the wall at right angles 
to its surface. It is assumed that the diameter of 
the beam is so large that the problem is only one 
dimensional. The thickness of the wall is assumed 
to be infinite. 

Let F(z) denote the neutron flux at a point in the 
wall located at distance z from the surface of the 
wall. The function F (2) satisfies the equation 

= 1* f0"nzi)E&t\Zi-z\}tei + Joe~ l t Z U ) 



LETTERS TO THE EDITORS 379 

which is a well known form of the transport equa-
tion. Here is the macroscopic total cross sec-
tion, 2S denotes the macroscopic scattering cross 
section and the function E i [ E t \ z i - z \ ] is defined by 

Ei[2t\zx-z\] = /. . — — du . 
J J I ZI-.Z I u 

An exact solution of Eq. (1) seems quite difficult 
to obtain. However, a simple approximation yields 
a reasonable result. Let us express the equation 
(1) in the form 

(2) 

and consider the integral 

fz°° F{zi)E&2t(zi-z)]dzi- (3) 

Let us represent the function F(z) in the form of 
product 

F(z) = F0(z) 

where the coefficient k is to be found from the 
transcendental equation 

S* tanh-1fe 
St k = 1 

f * FizJExiMz-z^dz! 

(5) 

f0°° F(z)dz = ^ f~F(z)dz 

(6) 

2 E, k 

Contraction of equation (6) yields 

S, f0°°F{z)dz = Jo 

i - J M " ^ ) ' 
(7) 

Let us now determine the current of neutrons J 
emerging from the surface of the wall. Integrating 
equation (1) over z from 0 to 00 we obtain 

f?F{z)dz = ̂  f0°°F{zi){2 - Ejfc^dZi+Q 

Making use of the relation 

J = S< £ 
we can write the equation (8) in the form 

J = J ° " " I f ) S< f T W d z . 

(8) 

(9) 

Putting (7) into (9) we have the relation 

J = J 0 1 -

22 t P - ^ J 
The form of the function F{z) has been chosen with 
respect to the exact solution of transport equation 

z kSiZ 
in an infinite space F(z) = Cie 1 + C2e 

— z 
Consider the function e tZl Ei[T>t(zi-z)]. At 

zi - z the function is not bounded and drops off 
very rapidly as {zi - z) increases. This sharp 
peaking makes the kernel act almost as a delta 
function. If the function F0{zi) is assumed to be 
smoothly varying, the integral (3) may be approxi-
mated by 

f™ F{zi)Ei[Et(zi-z)]dZL 

*F(z) f j ° E ^ t i z i - z ^ d z x (4) 

Introducing the relation (4) into the equation (2) we 
obtain 

Hence the albedo is 

A - f - 1-
1 " 

/- , ln(l+fe)\ • 
" 2Xt [l k ) 

(10) 

DISCUSSION OF ERRORS 

Let us compare the numerical results computed 
from the formula (10) with more accurate results. 

TABLE I 

Let us integrate equation (5) over z from 0 to 00 

2S 1 - A 2S 

"Exact" solution Formula (10) 

0 1.000 1.000 
0.25 0.955 0.951 
0.35 0.930 0.924 
0.45 0.902 0.890 
0.55 0.865 0.848 
0.65 0.820 0.793 
0.75 0.752 0.720 
0.85 0.660 0.611 
0.95 0.464 0.409 
0.98 0.327 0.280 
0.99 0.247 0.207 
1.00 0 0 
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Making use of the Wiener-Hopf technique1 we ob-
tain the exact solution of the albedo problem in the 
form 

A = ( I D 

where the function 0(p) is to be found from the in-
tegral equation 

AYU. A. ROMANOV, "Exact Solutions of Single Velocity 
Kinetic Equation and Their Application in Calculating Dif-
fusion Problems /Improved Diffusion Method/," FTD-TT-
61-124. 
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Ik 
f1 y<t>(y) . 

J* y + nay- 2 0 ( p ) ( l - f c V ) ' U 2 j 

According to the approximation technique present-
ed in Reference 1 we have computed the values of 

2 function 0 ( 1 ) for some values of The error 
&t 

introduced by this approximation is less than 0.1%. 
The comparison of the "albedo defects," 1-A, 

is given in Table I. 
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