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Letters to the Editors 

Calculation of Disadvantage Factors 
for Small Cells 

The calculation of the disadvantage factor for 
small reactor cells has been discussed by several 
authors1,2,4,5,7>9 who did not come to the same 
conclusion. The point that caused confusion is the 
behavior of the disadvantage factor in case the 
moderator's thickness in mean free paths goes to 
zero: does it decrease monotonically with de-
creasing thickness of the moderator or not? The 
aim of the present paper is to show that the dis-
advantage factor does not decrease monotonically 
with decreasing moderator thickness (keeping size 
and composition of the fuel rod constant), but has 
a logarithmic singularity in its first derivative that 
causes it to increase from a certain point. (For 
slab lattices the disadvantage factor itself has al-
ready this logarithmic singularity). 

It was shown by Newmarch1 that serious errors 
may arise from the Wigner-Seitz (WS) cylindrical-
cell approximation combined with a reflective outer 
boundary when transport theory is used for calcu-
lations on small lattice cells. This was confirmed 
by Thie2 who studied six, arbitrarily chosen, 
tightly packed square lattices with a low-density 
moderator (H20). He came to the conclusion that 
the use of P3 , S4, o r together with the WS ap-
proximation and the reflective-boundary condition 
may lead to gross overestimates of the disadvant-
age factor if the thickness of the moderator in 
mean free paths is less than 0.5. From all the 
methods he investigated, Amouyal's3 approxima-
tion gave best agreement with the Monte Carlo 
(MC) calculations which he performed for three of 
the six lattices in the actual xy geometry. To im-
prove the transport calculations and still retain 
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the WS model, Clendenin4 proposed to replace the 
reflective boundary conditions in the P3 approxi-
mation by the following requirements: zero cur-
rent and zero flux gradient at the cell boundary 
together with a third requirement whose choice 
was found to have little influence on the results. 
Honeck5, on the other hand, suggested an isotropic 
flux return, which is accomplished by adding an 
optically thick outer region of pure scatterer to 
the WS cell. Recently, Pomraning and Clark6 de-
veloped an asymptotic diffusion theory where the 
boundary conditions between the media (e.g. fuel 
and moderator) are: continuous current between 
the media and a specified discontinuity in the 
scalar flux. With this theory Pomraning7 calcu-
lated the disadvantage factors for four of the six 
Thie lattices, and, since he found reasonable 
agreement with Clendenin's theory but not with the 
MC values, he suspected the validity of the latter 
ones for reference purposes. The values of the 
disadvantage factors of the Thie lattices according 
to the different theories are given in Table II, and 
some of them are plotted in Figure 1 as a function 
of the moderator thickness in mean free paths. 
The characteristics of these lattices are given in 
Table I. The discontinuity between the first two 
lattices and the other four indicates that the dis-
advantage factor is not solely a function of the 
moderator's optical thickness. 

To make sure about the validity of the MC re-
sults, we calculated the disadvantage factors by 

TABLE I 

Lattice Characteristics a 

Lattice 
No. 

Pitch 
(cm) 

W/U 

Moderator cross sections 
(cm"1) 

Lattice 
No. 

Pitch 
(cm) 

W/U 
Z am ^ tm ~ ^ am 

1 1.524 4.09 0.0088 1.053 
2 1.524 4.09 0.00587 0.702 
3 1.143 1.87 0.0088 1.053 
4 1.143 1.87 0.00587 0.702 
5 1.143 1.87 0.00293 0.351 
6 1.143 1.87 0.000587 0.0702 

aFuel radius is 0.381 cm, Zaf = 0.387 cm'1, 
2 t f= 0.780 cm"1 
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1.2 

d 

1.1 

TABLE II 
Disadvantage Factors By Various Methods 

Lattice No. 1 2 3 4 5 6 
Pi 1.051 1.039 1.036 1.030 1.023 1.018 
Pomraning 1.105 1.093 1.090 1.084 - _ 
P3 (reflecting) 1.165 1.188 1.207 1.265 1.440 _ 
P3 (Clendenin) 1.099 1.077 1.075 1.059 - _ 
Amouyal 1.170 1.169 1.155 1.159 1.169 1.186 
Monte Carlo 1.135± .031 - - 1.137± .012 - 1.161± .010 
This work (Eq. 1) 1.198 1.178 1.161 1.146 1.143 1.169 
K-7 TRANSPO (refl.) 1.235 1.290 1.281 1.371 1.672 _ 
K-7 TRANSPO (white) 1.157 1.149 1.141 1.138 1.136 1.149 

MODERATOR THICKNESS (MEAN FREE PATHS) 

Fig. 1. Disadvantage factors by various methods. 

using a collision-probability technique1 which 
takes into account the squareness of the cell. The 
only assumption that enters, besides that of iso-
tropic scattering, is that integrals of the type 

/ P ( r — fuel) $ (r) d 7 

may be replaced by 

f P(r~> fuel) d~r • f$(r) dr*/fd^r 

where P(r->fuel) is th§ probability that neutrons 
born isotropically at r will make their first col-
lision in the fuel, and where the integration area 
is either fuel or moderator. This assumption is 
valid for lattices where the moderator is very thin 

in mean free paths, because P(r—>fuel) will then 
be close to unity for all ^(keeping size and com-
position of the fuel rod constant). For the plane 
case this approximation was formulated by Corn-
gold8 and it was investigated by Fukai9 who showed 
that, for closely packed lattices, this is a very 
good approximation indeed. The resulting expres-
sion for the disadvantage factor is 

S,/ Vf^af / j , p \ 

where P is the average probability that neutrons 
born isotropically in the moderator will suffer 
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their first collision in the fuel, V means volume, 
2 means macroscopic cross section, and the sub-
scripts denote fuel, moderator, absorption and 
total. It will be seen that d does not depend on the 
ratio Ham /^tm- The probability P was calculated 
following an approximate method givenby Brissen-
den10 which takes into account the squareness of 
the cell, thereby avoiding errors due to the use of 
cylindrical-cell approximation together with re-
flective-boundary conditions. The disadvantage 
factors obtained from(l) give good agreement with 
the MC values for the Thie lattices. It will be 
mentioned below thatBrissenden's method leads to 
overestimates of the disadvantage factor when 
VmZtm~* 0, keeping size and composition of the 
fuel rod constant; this tendency can be noticed al-
ready in Figure 1. 

We also calculated the disadvantage factors for 
the Thie lattices with K-7 TRANSPO11, a one-
velocity transport code that solves the integral 
transport equation in a WS cell with the aid of a 
THERMOS - type of transport kernel, with either a 
reflective or a white boundary. In case of the 
white-boundary condition, agreement with the MC 
values is good. This indicates that the WS approx-
imation seems also to be valid for tightly packed 
lattices, provided one uses Honeck's5 white-boun-
dary condition (isotropic flux return). 

Pomraning's7 assumption, that the disadvantage 
factor should decrease with decreasing 2 tm is 
not true, as the following argument will show. 
Write the disadvantage factor as 

d = W W o ) = Q { l + q ) ( 2 ) 

where r 0 i s the radius of the fuel rod, 
Q is the self _shielding effect of the fuel, 

i .e^ $(ro)/ 
q is $m/$(r0) - 1, 
and a bar denotes spatial average. 

In Pi and Amouyal's theory, the inner block effect 
Q is independent of the properties of the moderator 
(our K-7 TRANSPO calculations show a_very weak 
increase of Q with decreasing Htm ). If —» $(r0) 
in the limit of zero total cross section in the mod-
erator, and if Q does not increase too rapidly, the 
disadvantage factor should indeed decrease all the 
way and reach the limiting value Q. This is auto-
matically fulfilled by all differential methods that 
require a zero flux gradient at the cell boundary. 
As a matter of fact, Clendenin's and Pomraning's 
results do show this tendency. 

However, when integral methods are used, such 

WR. J. BRISSENDEN, "A Formula for the Escape Prob-
ability of a Rod in a Uniform Lattice," AEEW-R 282(1963). 

nR. J. J. STAMM'LER, to be published as a Kjeller 
Report. 

a behavior is no longer evident—in spite of the 
zero flux gradient on the cell boundary required 
by symmetry considerations—because of the 
logarithmic singularity in the transport kernel (or 
in its first derivative) for a number of idealized 
geometries. In the limit when Vm%tm the be-
havior of the disadvantage factor is determined 
by (1 - P)/Vm Htm. Since 1 - P ^ 1 - P0, it is suf-
ficient to investigate the behaviour of the function 

x(Intm) = (1 -P^/Ji:tm (3) 

where 1 - P0 is the first collision probability in 
the moderator region assuming a black fuel rod, 
and is given in terms of the chord distribution 
function/U) by the following expression12 

1 - Po = 1 - 7 ^ - / ( 1 - ) f(D di (4) 

and ft is the average chord length, which is pro-
portional to Vm<1_ From (4) it follows that x(0) is 
proportional to H2/H and that xr is for small argu-
ments proportional to -F/JI . The existence of #(0) 
and *'(0) depends on the asymptotic behavior of the 
chord-distribution function for large chords. In 
the plane case the distribution function behaves as 
1/&3 so that neither ft2 nor H3 are finite and x has 
a logarithmic singularity at zero, which implies 
that the corresponding disadvantage factor has the 
same behavior. There is little known about f{&) 
for other geometrical configurations of the mod-
erator, it can however be shown that, for square 
and hexagonal lattices,/U) behaves as 1/&4 which 
leads to a finite *(0),but a negative logarithmically 
singular first derivative. This causes_an uplift of 
d to a finite value in the limit when 2 tm 0, which 
i s in agreement with the MC r e s u l t s ( s e e F igure 1). 

In the WS approximation with reflective-bound-
ary condition, the chord-distribution function for 
the moderator escape probability does not go to 
zero when °°(there is a finite number of chords 
with infinite length, as was pointed out by New-
march1). For white-boundary conditions the 
chord-distribution function is expected to behave 
as l / l 4 , leading to a logarithmic singularity in*' . 
In K-7 TRANSPO the transport kernel for a shell 
behaves in the limit when l2tm as Kh{ HZtm ) 
which also has a logarithmic singularity in its first 
derivative. Thus K-7 TRANSPO with a white 
boundary is expected to give results with the same 
behavior as the MC values for square or hexagonal 
lattices (see Figure 1). It is interesting to note 
that the use of Brissenden's10 formula for P in (1) 
leads already to a logarithmical singularity in x, 
which is due to assumptions he made in the deriva-
tion of his formula. 

12K. M. CASE et al"Introduction to the Theory of Neu-
tron Diffusion/' Los Alamos Scientific Laboratory (1963). 
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In conclusion we may say: 

a) Thie's MC values are good, and the disad-
vantage factor does not decrease monotoni-
cally with decreasing moderator density. 

b) Integral transport methods are to be pre-
ferred over differential methods when calcu-
lating disadvantage factors for tightly packed 
lattices. 

c) The WS approximation with white-boundary 
conditions5?11 seems to be a good approxima-
tion for use with integral methods. 
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On the Variational Method Applied to 

the Monoenergetic Boltzmann Equation 

In two papers1 published in this journal, 
Pomraning and Clark have discussed the separa-
tion of the non- self - adjointness from the mono-
energetic Boltzmann equation. The authors, 
however, have been unable to find the proper 
boundary terms which, added to the functional, 
would yield the boundary conditions corresponding 
to the adjoint Boltzmann equation. It is proposed 
to use the alternate set of boundary conditions for 
which the boundary terms in the functional are 
relatively simple to obtain. 

Let us take the Boltzmann equation in the 
following form: 

+ <Jip(z,li) 

CO £ 
n-0 

2n+ 1 
2 fnPnfa) dll'Pn(tl')lp(z,lx'). 

(1) 

The notation is identical with that used in Refer-
ence 1. 

The angular distribution ip(z,n) can be split 
into the even and odd part with respect to ju.: 

ll)(z, jU ) = lp+(z, jU ) + lp'(z, JUL ). (2) 
Accordingly the even and odd parts of Equation 

(1) are satisfied separately: 

^ + crip+(z, fj,) 

CO £ (Zn+DfM^f1 dn'Pn(fi')il)+(z,n') 

= o (3) 

+oip-(z,n) 

- caZ(2n+l)fnP„( n) f dn'Pm(n')f(z, n') 
• 'A odd 

= 0. (4) 

Both equations are valid for ju belonging to the 
interval (0,1). By eliminating ip~(z, jjl) or ip+(z,fi) 
one can get an equation for ip+(z, jti) or ip~(z, \i), 
respectively. For example, solving Equation (4) 
for ju ) we get: 

0 o dz 
Cfn 

° odd 1 ' C j t n 0 dZ 

(5) 

and then the equation for ip+(z, ii) is: 

dz2 

+ CO* 2 (2n+l)f„P„(n)f1 d,i'Pn(n')<P+(z,n') 
pvpn 0 

odd 

0. (6) 

1G. C. POMRANING and M. CLARK, Jr., "The Varia-
tional Method Applied to the Monoenergetic Boltzmann 
Equation." Part I and II. Nucl. Sci. Eng., 16, 147-164 
(1963). 

It is the self-adjoint form of the Boltzmann 
equation. 

To find the proper boundary conditions for 
Equation (6) let us consider the albedo problem for 
a slab. We have 

= A + ( v ) (0 < ju — 1) (7a) 

ip(b,ii) =A-(n) ( - 1 ^ n < 0 ) . (7b) 

Taking into account Equation (5) we can easily find 
boundary conditions for Equation (6)0 

These are 


