
TABLE I 

Magnitude of Auto-Spectral-Density Function 
for a Localized Absorber* 

Frequency 
rad/sec Space Point 4 Space Point 5 

900 12.8 5.13 
1000 8.13 2.94 
2000 0.267 0.00124 
3000 0.526 0.0231 
4000 0.617 0.0256 

•"Tabulated value 10 times calculated value. 

TABLE II 

Real and Imaginary Parts of Cross-
Spectral-Density Function* 

Space Point 4 Space Point 5 
Frequency Frequency 

rad/sec Real Imaginary Real Imaginary 

200 1633 647.8 1081 225.8 
300 460.7 348.2 333.7 135.5 
400 123.9 202.7 115.1 89.60 
500 11.16 125.2 39.07 63.20 
600 -27.92 81.20 10.41 46.61 
700 -40.09 54.71 -0.5946 35.46 
800 -41.88 37.98 -4.567 27.56 
900 -39.65 26.98 -5.647 21.73 

1 000 -36.01 19.48 -5.549 17.31 
2 000 -8.497 0.3338 -1.115 1.792 
3 000 -0.7381 -0.8469 -0.3364 -0.2393 
4 000 1.150 -0.6808 -0.1874 -0.4136 
5 000 1.464 -0.4642 -0.1335 -0.3304 
6 000 1.367 -0.3143 -0.1026 -0.2394 
7 000 1.185 -0.2178 -0.08145 -0.1721 
8 000 1.005 -0.1553 -0.06600 -0.1255 
9 000 0.8514 -0.1139 -0.05438 -0.09341 

10 000 0.7241 -0.08563 -0.04545 -0.07098 

*Tabulated values 103 times calculated values. 

600 rad/sec and again at 4000 rad/sec for space point 4 and 
at 700 rad/sec for space point 5. This frequency corre-
sponds approximately to the sink frequency that has been 
observed for the coupled-core Argonaut reactor.3'4 It 
would appear that the imaginary parts of the cross-
spectral-density function may be particularly sensitive to 
the convergence of the modal solution since they are larger 
than might be expected for near symmetric locations. 

The observation that the characteristics of the cross-
spectral-density function are related to the degree of 
coupling of the fuel regions is certainly valid. An investi-
gation of the effects of core spacing and the nuclear prop-
erties of the coupling region on the spectral functions is 
presently being performed. 
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On the Stabilizing Effect of Delayed Neutrons 

For a nuclear reactor, the overall transfer function, 
which relates the Laplace transform of incremental power 
or neutron density 5 n ( s ) to the Laplace transform of 
reactivity input k(s), may be expressed as 

6»(s) / [*(s) ] = Z(s)/[l+K(s)Z(s)] (1) 

provided that the block diagram shown in Fig. 1 represents 
the linear incremental model of the system. Z(s), defined 
by 

n o Z(s) = 
I* 

is the zero-power transfer function of the reactor, and 
K(s ) denotes the transfer function of the feedback block. 
Obviously, the operating power level or the neutron density 
of the reactor is indicated by Mo-

lt is claimed by Smets1 that delayed neutrons may exert 
a destabilizing effect upon a reactor system, if the system 
has an open-loop frequency characteristic which intersects 
the negative real axis twice in the form of curve A in 
Fig. 2a. 

This conclusion was derived because curve A, which is 
the Nyquist plot of the system with the effects of delayed 
neutrons neglected, indicates a stable system, while curve 
B, obtained after the effects of delayed neutrons have been 
taken into account, reveals instability of the same power 
level. 

It is true, at the power level n0, the reactor without 
delayed neutrons is stable and the reactor with delayed 
neutrons is not. Such a result, however, is not sufficient to 
compare the degree of stability of the systems with the 
specified open-loop frequency characteristics, because, 
these are conditionally stable systems with two different 
stability regions.2 Each system is stable for sufficiently 
low and sufficiently high power levels; that is, when both 
intersections of the Nyquist plot with the real axis are 
either to the right or to the left of the point (-1 + j 0), it 
becomes unstable for a finite range of power between these 
two stability regions. Attention must be paid to the 
interesting fact that the range of power which corresponds 
to instability is different for each system. Therefore, the 
power level n0 may lie in the instability region of the 
system with delayed neutrons, while it is within the stable 
power range of the system without delayed neutrons. At a 
different power level the results may reverse. For 
example, curves A' and B' in Fig. 2a indicate that at the 
power level f n0, the system with delayed neutrons is 
stable, while the other system is not. 
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Fig. 1. Linear incremental model of a nuclear reactor. 
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Fig. 2. Nyquist plots of a nuclear reactor neglecting and taking 
into account the effects of delayed neutrons. Curves A and A' are 
the Nyquist plots without delayed neutrons. The Nyquist plots when 
delayed neutrons are taken into account are denoted by curves B 
and B'. n 0 is the reactor power level. 

If power is gradually increased starting from zero, first 
the system without delayed neutrons becomes unstable. 
This shows that the critical power which corresponds to 
instability is larger under the effect of delayed neutrons. 
Besides, the system with delayed neutrons is unstable in a 
smaller power range compared with the system without 
delayed neutrons. If the static sensitivities of the systems 
are compared it is seen that because of the reduced open-
loop gain the system with delayed neutrons is less sensi-
tive. In view of all these facts, the system with delayed 
neutrons has to be considered more stable. Hence, such an 
example is not acceptable as an evidence of the destabiliz-
ing effects of delayed neutrons. 

The curves in Fig. 2b represent the Nyquist plots for 
two reactors which are absolutely stable; that is, stable at 
all power levels. The only difference between these two 
systems is assumed to be the delayed neutrons. Curve A 
belongs to the system without delayed neutrons and curve B 

to the system with delayed neutrons. As seen, at a power 
level no the system with delayed neutrons is less stable. 
If, because of this result, the conclusion is derived that the 
delayed neutrons reduce the degree of stability, this con-
tradicts even Property 1, mentioned by Smets.1 

These systems must also be compared when power is 
increased gradually, starting from zero. Under these 
conditions, it is seen that the degree of stability decreases 
first in the system without delayed neutrons. Curves A' 
and B' in Fig. 2b reveal this fact. 

The Nichols chart was used by Smets1 to investigate the 
effect of delayed neutrons upon the dynamic behavior of the 
linear incremental model shown in Fig. 1, for 

K(s) = C (s + 0.0001) (s + 1) 
(s + 0.01) (s + 100) 

where C is a constant. 
The conclusion derived, however, that with the type of 

feedback considered, delayed neutrons enhance the oscilla-
tory behavior of the reactor, is not acceptable. The 
incorrect result is due to the incorrect determination of 
the arguments of the open-loop frequency characteristics. 

Besides, it must also be mentioned that, even from a 
correctly determined resonant peak, it is hard to interpret 
the dynamic behavior of a system whose over-all transfer 
function is not simple. Only for a second-order feedback 
control system which has a closed-loop transfer function 

w 2 / ( s 2 + 2 ? u „ s +wl) , 

where u>„ is the undamped natural frequency, the resonant 
peak Mp and the resonant frequency cop are uniquely related 
to the damping ratio ?.3'4 The presence of additional poles 
and zeros will obviously alter the results. For instance, 
one system may have an Mp of 0.5 and a £ of only 0.1, and 
another system may have an Mp of 1.5 and a £ as great as 
0.70. 

Therefore, before resorting to rather tedious proce-
dures to obtain the closed-loop frequency data, first, the 
open-loop frequency characteristic itself must be very 
carefully investigated, and as much information as possible 
as to the stability and the degree of stability of the system 
must be derived from it. If it is believed that the closed-
loop frequency response also yields additional and signifi-
cant information, it can be obtained later. 

The following analysis shows that the effect of delayed 
neutrons upon the dynamic performance of the system can 
be very easily determined by interpreting the open-loop 
frequency data only. 

Here, for the sake of simplicity, one mean group of 
delayed neutrons with parameters X = 0.08 sec"1 and fi = 
0.00755 will be considered. For I* = 10~3 sec, the open-
loop transfer functions of the systems without and with 
delayed neutrons become 

(s • 
s(s + 

0.0001) (s + 1) 
0.01) (s + 100) 

and 

Z2(s) K(s) = n0C (s + 0.0001) (s + 1 ) (s + 0.08) 
I* s ( s + 0.01) (s + 100) (s + 7.55) 

respectively. 
The Bode plots of arguments of these open-loop transfer 

functions are shown in Fig. 3. Since there is no possibility 

O. J. M. SMITH, Feedback Control Systems, p. 26. McGraw-
Hill Book Company Inc., New York, Toronto, London (1958). 
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Prentice-Hall Inc., Englewood Cliffs, N.J. (1967). 
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Fig. 3. Bode plots of arguments. Curves A and B represent 
the argument vs frequency diagrams for 

1 (; a; + 0.0001) (j 0) + 1) 
Ju ( j a) + 0.01) (j co + 100) 

and 
1 (; 0) + 0.0001) (j w+l)(jw+ 0.08) 

jw (;' 0) + 0.01) (j a) + 100) (;' co + 7.55) ' 
respectively. 

for the arguments to be ± 180°, it can be readily concluded 
that both of the systems are stable regardless of the value 
of the constant n0C/l*, that is, they are absolutely stable. 

Again, the investigation of the arguments reveals that 
the Nyquist plots of the systems considered must remain in 
the right-hand half plane, and therefore, oscillatory tran-
sients can not be expected. In other words, these systems 
are both very overdamped. The Nyquist diagrams plotted 
for tioC/l* = 1 sec - 1 in Fig. 4 are in good agreement with 
this conclusion. 

Further, the open-loop transfer functions show that the 
reactor with delayed neutrons has a velocity gain constant 
which is smaller than the velocity gain constant of the 
system without delayed neutrons, by a factor of 0.08/7.55. 
Hence, the system with delayed neutrons is even more 
sluggish. 

The peak in the closed-loop gain curve (Fig. 7, Ref. 1) 
obtained considering the effect of delayed neutrons is not 
the resonant peak, since the gain assumes larger values 
than this as the frequency is reduced. Therefore, it can 
not reveal an unfavorable effect of the delayed neutrons. 

Again, if the feedback transfer function is 
s + 1 

(s + 0.01) (s + 100) 
the delayed neutrons exert a stabilizing effect. 

An alternative approach will be followed to analyze this 
example; namely, the Root-Locus method will be employed. 

The open-loop transfer functions, in this case, without 
and with the delayed neutrons, respectively, are 

Z ^ s ) ^ ) = n0C (s + 1) 

and 
I* s(s + 0.01) (s + 100) 

(s + 1)(s + 0.08) 
Z2(s) K(s) - ^ S ( s + 0.01) (s + 100) (s +7.55) 

The Root-Locus diagram for the characteristic equation 
1 + Zl(s)K(s) = 0 is sketched in Fig. 5a. Figure 5b denotes 
the same diagram for 1 +Z 2(s)K(s) = 0. 

for curve A 

for curve B 

Fig. 4. Nyquist plots of highly overdamped systems, 
diagrams for 

The 

and for 

(s + 0.0001) (s + 1) 
s (s + 0.01) (s + 100) 

(s + 0.0001)(s + 1) (s + 0.08) 
s(s + 0.01) (s + 100) (s + 7.55) 

are denoted by curves A and B, respectively. 
The figures on the curves are the values of frequency in 

radians per second. 

As seen, the systems considered are stable for all 
values of the constant n0C/l*, in other words, the charac-
teristic equation 1 + Z1(s)K(s) = 0 and 1 + Z2(s)K(s) = 0 
can never have positive real roots or pairs of complex 
conjugate roots with positive real parts. 

The value of the constant n0C/l*, which corresponds to 
critical damping, is indicated in Fig. 5 for each system. It 
is 0.0049 sec - 1 for the system without delayed neutrons and 
0.49 sec - 1 for the system with delayed neutrons. 

Figure 5 further reveals that the minimum decay con-
stant of transient oscillations is 0.0049 sec - 1 in the case of 
the system without delayed neutrons. When delayed neu-
trons are taken into account the minimum decay constant of 
dominant transient oscillations becomes 0.0052 sec"1. 

The comparison of the power levels at which the sys-
tems become critically damped and of the decay constants 
show that the reactor with delayed neutrons is more stable 
than the other. 

By comparing the closed-loop gain curves, Smets1 has 
come to a reverse conclusion. However, if Fig. 8 in his 
paper is more carefully examined, it can be seen that the 
gain curve without delayed neutrons has a larger resonant 
peak—"distinct" or not it does not matter—than the other. 
If such an analysis were sufficient to estimate the effect of 
delayed neutrons upon the dynamic performance of the 
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Fig. 5. Root-locus diagrams, 

(a) A sketch of the root-loci for 

n0C (s + 1) 1 + I* s (s + 0.01) (s + 100) 

(b) A sketch of the root-loci for 

n0C (.s + 1) (s + 0.08) 

0 

1 + I* s (s + 0.01) (s + 100) (s + 7.55) = 0 . 

system, this would reveal the stabilizing rather than the 
destabilizing effect of delayed neutrons. 

Sevirn Tan 

not considered. To conclude, as above, that this "example 
is not acceptable as an evidence of the destabilizing effects 
of delayed neutrons" seems, therefore, illogical because 
the reactor model does become unstable when the param-
eter fi is increased from zero to its real, non-zero, 
physical value. 

In Ref. 1, two examples of reactors in which delayed 
neutrons enhance the oscillatory behavior of the transient 
response are given. With the feedback kernel given 
erroneously in the caption of Fig. 6, it is true that the 
enhancement of the oscillations cannot be shown. However, 
it is easily seen that for reactors having feedbacks similar 
to the one drawn up in Fig. 6 of Ref. 1, the effect of delayed 
neutrons can be to make the response more oscillatory, 
(cf., curves A and B of Fig. 2b, above). 

A second example is dealt with in Ref. 1, and it is con-
cluded that "delayed neutrons enhance the oscillatory 
behavior of the solutions." To write that Smets has come 
to the conclusion that the reactor without delayed neutrons 
is more stable than with delayed neutrons is groundless, 
because it was not written and because the question of the 
degree of stability was not even considered. 

This example can also be examined in terms of the root 
locus, provided that one does not assume, as done above, 
that u) is given in terms of rad/sec. The high frequency 
part of Figs. 7 and 8 (Ref. 1) shows that x > 100 and, 
therefore, that the zero at -X and the pole as -(fi/l) of 
Fig. 5b above are at the left of the pole -100. Hence, one 
should compare the root loci of 

1 + WpC 
I s (s 

(S + 1) 
+ 0.01)(s + lOOT = 0 

and 

1 + n0C 
I 

(s + 1) (s + X) 
s ( s + 0.01) (s + 100) (s + fi/l) = 0 

Middle East Technical University 
Ankara, Turkey 
April 21, 1969 

"Reply to 'On the Stabilizing Effect of 
Delayed Neutrons' " 

In the above Letter to the Editor, Professor Tan shows 
that the so-called "stabilizing effect of delayed neutrons" 
can be considered from vastly different angles, and she 
studies the variation of the degree of stability when the 
power level is increased. While this analysis is basically 
correct, it would be wrong to believe that it contradicts the 
conclusions given in Ref. 1, because in this reference the 
interest lay only in comparing the dynamic properties of 
reactors with and without delayed neutrons at the same 
power level, knowing that reactors without delayed neu-
trons did not exist and that, therefore, the comparison was 
fairly academic. 

More precisely, in relation to Fig. 2a, above, Professor 
Tan agrees with the single conclusion regarding conditional 
stability reactors given in Ref. 1. The ensuing discussion 
by Professor Tan on the degree of stability simply com-
pletes the analysis given previously where this aspect was 

In the region of the complex plane s « 100, s can be 
ignored with regard to X and fi/l. The root locus is not 
altered but the gain is reduced. If n0C/l - 400, the tran-
sient response for fi = 0 is aperiodic (critical damping, 
double root near -2) and when fi > 0{[(XZ)/J3] = 10~2} the 
dominant roots are s -0.025 ± j 0.2. Therefore, the 
reactor with delayed neutrons has a weakly damped oscil-
latory response while the reactor without delayed neutrons 
has a strongly damped aperiodic response. 

In conclusion, Professor Tan's analysis precisely shows 
conditions under which delayed neutrons may make the 
reactor more stable (or less stable). It does not disprove 
the statements made previously: 

1. A reactor can be unstable, when fi > 0 and asymp-
totically stable in the small, when fi = 0. 

2. In some reactors, the effect of the delayed neutrons 
is to enhance the oscillatory behavior of the transient 
response. 

3. Consideration of the peaks in the closed-loop transfer 
function provides information on the transient re-
sponse (in particular the location of the dominant 
roots in the complex plane). 

Henri B. Smets 
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