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used resolved parameters up to an energy of 4 keV, 
with an average gamma width of 0.0231 eV. The 
range between 4 keV and 32 keV was treated on a 
statistical basis. The contributions of each range 
are: 
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Statistical-Error Estimation for the 
Transfer-Function Measurements 

of a Noisy Reactor System 

The application of the cross-correlation method 
in the determination of the dynamic response of a 
system which contains extraneous noise has long 
been accepted as one of the most reliable methods 
for recovering signals in the presence of noise. 
The theory of this method can be found in the 
literature1*2*3. Also, many discussions have been 
presented on the statistical errors of the results 
of measurements where some discrepancies ap-
pear because of the limitation in application of the 
theory2*4. In many situations, intuition plays a 
major role in estimating these statistical errors . 
Under the condition of using a sinusoidal input 
signal for transfer-function measurements, for a 

noisy reactor (e.g. EBWR) intuition has often led 
to the simple conclusion that the statistical error 
is dependent soley on the length of the record. In 
order to derive a more correct estimate of the 
error, the characteristics of the system noise and 
signal must be included in estimating the error . 

The result of an investigation using statistical 
theory is presented here. The two most common 
types of noise have been used for illustration. 

The assumptions that have been made are 1) the 
system noise is a stationary random process; 
2) the ergodic hypothesis is valid; 3) the statistical 
error has a Gaussian distribution. 

Let the system input be x, where 
x =Asin oot , (1) 

and let the system output be y, where 
y =B sin (ut + (j>) +n(t) . (2) 

The finite-time cross correlation between x and 
y is 

<t>yx(r) = [A sin(a)t + wr)] [ b sin(co* + <M + n{t)] dt 

AB cos(a)T - 0) + e ( r , T ) , ( 3 ) 

where e(r, T) is the error function, and 

e(r, T) = jr- f j A sin(cot + cor)n(t)dt . (4) 

The standard deviation of e can be found from 
the fourth moment2 of functions x and n where 

e 2 ( r , T ) = - A - f j ( T . „) x 

CO 0,1 ( 5 ) 

where ®xx(v), ®nn(v), ®xn{v) and ®nx{v) are the 
theoretical correlation functions for x and n : 

®xn(v) = &nx(l/) = 
lim 

- r T Jo 

x sin utf] | n(t + */)] dt = 0 (6) 

1Y. W. LEE, Statistical Theory of Communication, John 
Wiley and Sons, Inc., New York, (1960). 

2J. S. BENDAT, Principles and Applications of Random 
Noise Theory, John Wiley and Sons, Inc., New York, (1958). 

®W. B. DAVENPORT and D. L. ROOT, An Introduction 
to Theory of Random Signals and Noise, McGraw-Hill Book 
Co., New York, (1958). 

4V. RAJAGOPAL, "Experimental Study of Nuclear Reac-
tor Internal Noise and Transfer Function Using Random 
Reactivity Variations and Correlation Analysis," (micro-
film), University of Michigan, Ann Arbor, (1961). 

®xx(v) = f0T ^2 s i n ^ s in + uv)dt 
lim 

T —> oo T 

*2 

2 

lim 

coscoy ( 7 ) 

* „ » = s : n ( t 

(8) 



408 LETTERS TO THE EDITORS 

where is the normalized autocorrelation 
function for nl(t), and or„2 is the mean square value 
of n(t). 

Case I 

M = 

Equation (5) becomes 
0 ) 

2(r, T) 
<r 2 

T 2(a2 + a)2)2 

x \aT{a2 +u?) + - a2)(l - e~aT )] 

(10) 

Since aT » 1 is usually encountered, equation 
(10) can be simplified as: 

o„2A* (10-a) 

These results show that the statistical error is 
a function of A, GO and T. A c loser examination 
shows that the measurement would have larger 
errors at low frequencies and smaller errors at 
high frequencies. 

Case II 

®'nn (v) = e~ a V c o s k>0 v 

Equation (5) becomes 

(11) 

62(T,T) = 
2 T2 

aT 

where 
_ —i 2 a o ) + o ) 0 = -tan 2—7 r r 

<z + (CO + CJo) 

$ 2 = +tan -1 

a + (GO - U)O) 

(13) 

(14) 

Again, by using the condition that aT » 1, 
Eq. (12) can also be simplified as: 

€ 2 ( T , T ) -
aon2 A2 2 2 2 A +GO +OO O 

2T*~ \ [a2+(u+u0)2][a2+(u -o>0)2] >. (12-a) 

Equation (12-a) reduces to (10-a) when coo=0. 
This shows that the largest error will occur when 
GO = cx)o and for other frequencies the argument 
Case I applies. 

In actual transfer function measurements, a„, a, 
and o>o can be measured beforehand by obtaining 
the autocorrelation function of the noise without 
sinusoidal signal. Then, for a given bound of 
€2(T,T), T. can be determined readily f rom the 
formula, or if knowing T, e^r, T) can be calculated. 
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a2 + (OO+ (J00)2 0 + (O>- (JO0)2 

a2 - (GO + GOQ)2 

[a2+ (co+ o)0)2]2 

A2 - (GO-GOQ)2 

[a2 + (go - co)2] 
+ e -aT cos (CJOQT +<£I) + COS(A)0R+$2) 

TF2 + (GO + GOo)2 CI2 + (CO- GOo)2 
(12) 


