
Letters to the Editor 

Comment on the Modeling of Thin Absorbers 
via 5-Functions 

Since the early days of pile oscillator experiments, oscilla-
tors and control rods have been approximated in modeling and 
calculations by spatial 5-functions. The first use of this approx-
imation is found in the pioneer work by Weinberg and Schwein-
ler,1 who used a three-dimensional 5-function to describe a 
small sample moved back and forth in a reactor. The use of one-
and two-dimensional 5-functions in noise theory was introduced 
by Williams2 to describe vibrating absorber plates. In all the 
works to which this letter refers, including this letter, one-group 
diffusion theory is used. 

In all these cases, the space- and time- or frequency-
dependent flux is calculated, or rather its deviation from the 
static flux (the fluctuating part of the response is searched). In 
such cases, there is no formal difficulty present when solving the 
relevant equations. This is because the equations are inhomo-
geneous; that is, they have the form 

Lt(r)4>,(r) = 8(r - r0) , (1) 

where L, is a linear operator and both L, and <t>, depend on 
time (or frequency). In dimensions higher than one, the solution 
diverges at the source point r0, but this does not represent any 
major difficulty since the solution is discarded in points lying 
in close vicinity of the source point in view of the finiteness of 
the real oscillator or rod. The main point is, nevertheless, that 
it is possible to find a solution to Eq. (1) in the ordinary sense. 

The situation changes when the static equations are consid-
ered. The equation will then be homogeneous; that is, one shall 
have 

L(r)4>(r) = y<Hr)d(r - rc) , (2) 

where 0 stands for the static flux and L is the static (time-
independent) diffusion operator. The constant y is introduced 
to describe the strength of the absorber that is approximated by 
the 5-function, and it is equal to Galanin's thermal constant.3 

In one dimension, that is, in a slab reactor with an absorb-
ing plate, this equation still has an ordinary solution. Putting 
the rod (plate) at the center, one reads the equation as 

A<T>(x) + B24>(X) = ^ S(x)H0) , (3) 

where 
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and the parameters appearing on the right side of the forego-
ing equation have their usual meaning. In a reactor with extrap-
olated boundaries at ±a, this has the solution 

4>(x) =AsinB(a - |x|) (4) 

with the criticality equation4 

y = —2DB cot(Ba) . (5) 

Solutions (4) and (5) can also be arrived at by starting with a rod 
of finite thickness d and absorption cross section and then 
letting d -> 0 and Lr

a -> oo such that 
dLr

a = y (6) 

remains constant. This definition of y leads to Eq. (3), and 
it also equals the definition of the thermal constant given by 
Galanin.3 

In two dimensions, the situation is different. The two-
dimensional diffusion equation, describing the static flux in a 
cylindrical reactor with axial symmetry and with an infinitely 
thin absorbing rod of thermal constant y in the center, reads 

A Mr) + B 2 H r ) ^Hr)<t>(r) . (7) 

Making use of azimuthal symmetry, one can write Eq. (7) as 
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dr + B2<t>(r) = 2k rD 5(00(0) . (8) 

For r > 0, Eq. (8) is a homogeneous equation, with a general so-
lution that satisfies also the boundary condition <T>(R) = 0 as 

4>(r) = A[J0(Br)Y0(BR) - Y0(Br)J0(BR)] . (9) 
Equation (9) can be also written in the general form 

4>(r) = A[J0(Br) + CY0(Br)] . (10) 
Integration of Eq. (8) around the origin gives the condition 

lim r 
e - » 0 

d*(r) 
dr 2ixD 

0(0) , (11) 

and substitution of solution (9) or (10) into condition (11) 
should yield a criticality condition between y, B, and system 
size R in the form of an expression for C (which is also a func-
tion of BR). 

There is no solution to Eq. (8) in the ordinary sense, that is, 
in the form of solution (10) with a finite C. A formal solution, 
satisfying the homogeneous form of Eq. (8) together with con-
dition (11), can be given as follows: 

0(r) =\\m A[J0(Br) + C(a)Y0(Br)] , (12) 

where the limit over C(a) is defined such that 

0(0) = lim (lim [J0(Br) + C(a)Y0(Br)] 1 = 0 . (13) 
a-> 0 r-*0 

This gives the condition 

lim C(a) = —lim -^y^pr = 0 . (14) 
a-*0 r .0 Y0(Br) 



With these definitions, solution (12) will fulfill condition (11) 
because 

lim r 
e-0 

d<t>(r) 
dr 

~ - l im eC(a) i - = 0 = 0(0) . 
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Solution (12) is not regular but is nonnegative and finite. For 
r 0, it is equal to the unperturbed solution (solution without 
a rod), and for r = 0, it equals zero. From this, it also follows 
that the critical buckling must be equal to the B2 of the unper-
turbed reactor in order to fulfill the boundary condition. 

In other words, a 5-function absorber in two dimensions has 
no effect on the criticality of the system and on the static flux 
shape except at the rod position for the latter. The reaction rate 
and critical buckling is the same in the reactor with and with-
out the rod. 

The local and, with decreasing rod diameter, diminishing ef-
fect of a two-dimensional central cylindrical rod with radius a 
is well known.5 It can also be seen by solving the correspond-
ing equations for a finite rod. For simplicity, we describe the ef-
fect of the rod by prescribing a logarithmic boundary condition 
on its surface; i.e., 

Via) 
0(«) 

: 7 • (15) 

The 7 above is equal to the inverse of the extrapolation distance 
into the rod, and an easy calculation in a gray rod yields that 

aK 
2 

(16) 

where again ££is the absorption cross section of the rod. It can 
be also seen from either definition (15) or Eq. (16) that the 
7 here is 1/(2 ira) times the thermal constant of Galanin3 and 
Pazsit.4 We use these two slightly different definitions of y for 
the one- and two-dimensional cases, respectively, in the hope 
that they will not lead to confusion. 

The solution outside the rod, satisfying the boundary con-
dition at R, is given by Eq. (9), and substitution into condition 
(15) yields the criticality equation 

Jo(BR) yJ0(Ba) + BJx(Ba) 
Y0(BR) 7Y0(Ba) + BYX (Ba) 

(17) 

This equation can serve to see how the transition to the singu-
lar solution (12) comes about with decreasing rod diameter a. 
The left side of Eq. (17), which gives the ratio between the co-
efficients of the Y0(Br) and the Jo(Br) terms in solution (9), 
vanishes with vanishing rod radius a. The flux dip around the 
rod becomes more and more local but also steeper and steeper. 
At the same time, the critical B value approaches that of the un-
perturbed system. 

The fact that the effect of an absorbing layer in a slab is 
global [see, e.g., Eq. (4)], whereas that of a cylindrical two-
dimensional rod is local, was already remarked by Galanin.3 

His reasoning was that in a slab reactor, a neutron can cross the 
absorbing layer several times before it is finally absorbed or 
leaks out from the system; thus, the effect of the layer is en-
hanced and becomes global. In a different way, one can argue 
that in one-dimensional geometry, a neutron cannot pass from 
one side of the absorber to the other without passing through 
it, whereas in a two-dimensional case, it can get around the ab-
sorber rod. 

Furthermore, in one dimension, letting d (absorber width) 
tend to zero while increasing Er

a at the same rate will lead to a 
finite effect of the rod (layer) even in the limit of a 5-function 
because the total absorption rate of the rod (per unit y-z area) 

is preserved (assuming that the flux within the rod is unaffected 
by performing this limit, an assumption that can be shown to 
be true). On the other hand, keeping y constant in Eq. (16) while 
letting a -» 0 (and thus increasing £„) leads to a decreasing of 
the total absorption rate in the rod per unit axial length, even 
if the flux is unaffected by this procedure. This is because the 
area of the rod geometrical cross section diminishes quadrati-
cally with a (rod radius). Putting it differently, the probability 
of an average neutron path not crossing the rod will increase 
faster than the probability of capture within the rod of those 
neutrons whose path crosses the rod. 

One might think that in the process of shrinking the rod into 
a 5-function, one could maintain a finite (bigger than zero) in-
fluence of the rod if the cross section were increased faster than 
1 /a, that is, if one had y -* oo sufficiently fast when «->0. How-
ever, Eq. (17) shows that this is not the case. No matter how fast 
7 diverges, the right side (and thus also the left side) of Eq. (17) 
vanishes, and thus, solution (9) reverts to that in the unper-
turbed system, with the effect of the rod on flux shape and crit-
icality disappearing. 

The explanation for this latter result is related to the fact 
that in a multiplying system of finite volume V G RN of dimen-
sion N = 1,2,3, the effect of any finite absorbing subvolume 
dVG RN remains finite even if the absorbing cross section of 
the subvolume dVdiverges. This is due to self-shielding: With 
Ea diverging, the flux density diminishes almost everywhere in 
the subvolume dV, that is, except on its surface dS e RN~l. 
This way, since the flux remains nonzero only in a subdimen-
sional volume, the total reaction rate 

lim E„->oo f Ea(r)<t>(r) dr 
JDV 

(18) 

remains finite. The author cannot refer to any general proof of 
this statement, but the content of the statement feels intuitively 
plausible. An example of this in one dimension is given in 
Ref. 6, where the finite reactivity worth of an infinitely strong 
absorber is calculated. The foregoing results say furthermore 
that the integral in Eq. (18), that is, the effect of the absorber, 
vanishes if the volume dV tends to zero in two dimensions and 
higher dimensions. 

We close this letter with one general and one specific com-
ment on the modeling of small volumes via 5-functions that also 
offer an alternative explanation for the difference between the 
one-dimensional case and the case of higher dimensions. The 
general comment is that there is a self-contradiction in the pro-
cess of decreasing a certain volume Kand concurrently increas-
ing a cross section, say ad infinitum. In a simple way, one 
can argue that with a given atomic density, increasing Za means 
increasing the microscopic cross section oa. It is obviously a 
contradiction in terms to decrease V below a3 / 2 , which is the 
volume corresponding to the (absorbing) cross section of one 
single (spherical) nucleus. The picture is obviously oversimpli-
fied but is used only in a rough qualitative way. The specific 
comment concerns the application of the above to explain the 
difference in one dimension and, say, two dimensions (finite ef-
fect and zero effect of a thin, strong absorber, respectively). In 
the one-dimensional case, the diffusion process takes place 
along the x axis, and to show up a sufficiently large cross sec-
tion for the neutrons, the scattering or absorbing centers need 
to have a sufficiently large geometrical cross section in the y-z 
plane. Although completely unphysical, formally this is possi-
ble in a thin absorbing layer even if its thickness is tending to 
zero. One visualizes the host atoms as being smeared out into 
flat (two-dimensional) objects perpendicular to the x axis, in 
which process they can still maintain an arbitrarily large cross 



section. In the two-dimensional case (cylindrical reactor with ab-
sorbing rod), however, the host atoms are smeared out into line 
filaments when the rod diameter tends to zero and, thus becom-
ing one-dimensional, cannot have an arbitrarily large cross sec-
tion (the cross sections actually vanish). Similarly, in three 
dimensions, a point absorber forces also the host atoms to be-
come geometrical points. Thus, in two and three dimensions, the 
5-function character of the absorbing volume overrides the as-
sumption of the diverging cross sections, whereas in one dimen-
sion, it does not. 

Imre Pazsit 
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Response to "Comment on 'Analysis of Cluster 
Geometries Using the D P I Approximation 

of the J ± Technique' " 

There seems to be confusion between my definition of the 
J± technique and that of Mohanakrishnan.1 In fact, what he 
calls the J± technique is what I would call the interface current 
method. The main difference between the two techniques is that 
the J± technique refers to a decomposition of a cell into iso-
lated homogeneous zones, while the interface current method 
allows for a decomposition of the cell into heterogeneous zones. 
As a result, the computation of transmission probabilities is suf-
ficient when the J+ technique is considered, while the interface 
current method generally requires additional collision and leak-
age probabilities. However, for a given cell, the number of 
transmission probabilities required by the J± technique is gen-
erally much larger than that required by the interface current 
method. Since the purpose of my paper2 was to discuss the use 
of the J± method, I did not think that a complete literature re-
view of the interface current method was needed. 
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