
and show that it has the following generalized importance 
interpretation: A neutron at the point x in phase space 
has a probability <l>+(x) of eventually being detected by 
the given detector. We can therefore write (/+,0) as the 
detector response in the perturbed system since it is the 
integral of the perturbed flux times the detector cross 
section. Accordingly, the quantity we want to calculate, 
the change in the detector response as a result of the 
perturbation, is given by 

A(/+,0) = (/+,0) -
= (/+,0) - (fiM - (/0+,</>) + ctf ,0) 
= (A/+,0) + ( f t , A0) 
= (A/+.0) + ( f f j0 f ,A0) , 

where we have added and subtracted the same quantity 
to go from the first to the second line. The second term 
in the fourth line can be rewritten as 

(Ht<l>tM) = ff0<M - »o,ffo0o) 
= (0+ff„0) - a>i,fo) + wis) - (tf , /) 
= (00 ,ffo0) + (00, A/) - (0j, m) 
= (00,A/) - ( 0 j , A f f 0 ) 

so that we have the desired result 
A(/+,0) = (A/+,0) + (0o, A/) - (0J.AH0) . (23) 

A first-order form has been given by Lewins5'6 and a more 
general form, which is both exact and stationary, can be 
derived.7 

To obtain Eq. (4) of Sec. I from Eq. (19), we make the 
following identifications: 

X = k 
l\ 

(24) 
a 2Ar-component column vector, the first N components of 
which are the group fluxes, while the last N components 
are the group currents (which in turn are vectors in three-
dimensional physical space). 

• - ( ! ! ) • M - v • 
(25) 

2N x 2N matrix operators; the element V- is to be inter-
preted as the divergence operator multiplied by the N xN 
identity matrix. 

5 J . LEWINS, Trans. Am. Nucl. Soc., 7, 211 (1964). 
6 J . LEWINS, "Developments in Perturbation Theory ," in Ad-

vances in Nuclear Science and Technology, P. GREEBLER and 
E. J . HENLEY, Eds., Vol. 4, p. 309, Academic P r e s s , New York 
(1968). 

7D. SELENGUT, Trans. Am. Nucl. Soc., 5, 413 (1962). 

The 2AT-component adjoint state vector is defined by 

and the inner product by 

(0+0) = S fdv (0t0„ + ft • w , n-1 J 

(26) 

(27) 

where the space integration is carried out over the entire 
reactor, and jt • j„ indicates the scalar product of the 
group n currents in three dimensions. It is then a straight-
forward matter to verify, using Gauss' theorem, that the 
adjoint operators are 

H *=Cf ; ) • - £ • w 

Writing the direct and adjoint Eqs. (15) in component 
form, we have 

(29) 
and8 

V-7 + A<j> = -g B<j> 

j = -Z>V0 

V - j + + A + 0 + = | B + 0 + 

j+ = -Z)+V0+ . (30) 
It follows that this current-flux representation is equiva-
lent to the usual second-order form [Eq. (1)] of the reactor 
equations. 

To evaluate the perturbation expression [Eq. (19)], we 
have only to note that 

" • f t * ! ) • - . V ) ™ 
so that 

(0j,Aff0) = jdv%t A B<t> 

(0j,AA-0) = /dv(<t>t AA 0 - jt • AD-'j) 

(0o, ffo0) = Jdv<t>iB 0 . (32) 

The relations of Sees, n and ni can be obtained in an 
analogous manner. 

The negative sign in the adjoint current equation is a conse-
quence of the part icular choice of the matrix operator K. It has 
the advantage that the formal ism becomes self-adjoint in the l imit-
ing one-group case. 

Corrigendum 

W.M.STACEY, Jr., "Continuous Slowing Down Theory Applied to Fast Reactor Assemblies," Nucl. Sci. Eng., 41, 381(1970). 

The square brackets in Eq. (2) should contain 
j-exp^' - u) - j . n s t e a d o f *)] . 


