
Discrete and Continuous Interactions in 
Charged Particle Transport Theory 

In a recent paper , 1 H o f f m a n et al. proposed applying the 
neutral particle t ranspor t code, ANISN, to the calculation of 
sput ter ing yields (inner wall erosion of a controlled thermo-
nuclear reactor) . In o ther words, they solved a fast ion 
t ranspor t problem by using a DSN method . Bartine et al. made 
a similar a t t empt for electron penetra t ion in several materials.2 

As is well known , the scattering cross sections are very 
anisotropic for charged particle interact ions, so the energy 
transfer opera tor is usually split in to two parts. The first one, 
as in neu t ron t ranspor t theory , represents ra ther large energy 
transfers (LET) or "discrete in teract ions ," while the second, 
the so-called con t inuous slowing down (CSD) different ial 
opera tor , allows only small energy transfers (SET). As pointed 
out by H o f f m a n et al., this division is qui te arbi trary, and, 
in principle, a pure integral opera tor could include all kinds of 
interact ions. Unfor tuna te ly , such an approach would require 
too many Legendre scattering kernels. 

Generally, the CSD term is obtained by using a Taylor ex-
pansion for the f lux in the SET operator . As shown by 
Greenspan and Shvarts,3 this procedure is correct for un i form 
space dis tr ibut ions of particles. For space-dependent prob-
lems, another approximat ion is needed, and usually it is 
assumed tha t no def lect ion occurs during a "con t inuous 
in te rac t ion . " This last approximat ion is inconsistent because 
a CSD should result f r o m a cont inuous def lect ion. 

It is k n o w n , in plasma physics, for example, tha t a full 
con t inuous interact ion approximat ion leads to the so-called 
Fokker-Planck opera tor of the following fo rm: 

± S{E)<Kx,E,n) + T(E) (1 • ii2) (x,E,n) (1) 

when the thermal mo t ion of target particles can be neglected.4 

Then, in the general case, the SET opera tor should have the 
same fo rm as Eq. (1) and should no t reduce to the first term 
only. This can be derived directly f r o m the Bol tzmann equa-
t ion. 

For plane geometry , one can wri te s 
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In the above equat ions, ju and Hi are the cosine of the 
pitch angle and the cosine of the scat ter ing angle in the 
laboratory system, respectively. The s tandard versions of 
DSN codes are based on Eq. (2). The Legendre expansion has 
to be t runcated somehow; in o the r words, j(E' -*E) is set to 
zero when / > lM . In practice, for neu t ron t ranspor t problems, 
IM= 5 is a very good approx imat ion . For charged particles, on 
the o ther hand , a large value of /M is needed , as shown by 
H o f f m a n et al.,1 a l though they in t roduced CSD terms in the 
formalism. Another strategy is there fore required. 

Let us call m^ and m2 the masses of test particles described 
by Eq. (2) and field particles (targets), respectively, assumed 
to be at rest with a densi ty n2. Then , the Legendre scattering 
kernels are given by 5 

ZsJ(E' -*E) = 2sJ(E', T) = n2^-±P,(»L)os(E',nc) (5) 

for aE' < E < E' and cancel elsewhere. In this equat ion , 
T = E' - E represents the recoil target energy, and 
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is the parameter given by H o f f m a n et al.1 In the above equa-
t ion, the different ial microscopic cross section as(E',)ic) de-
pends very much on the value of nc, the scattering angle cosine 
in the center of mass. Because of the energy angle correlat ion, 
one has5 
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Let us define a small scattering angle 6 c m below which 

interact ions can be considered as cont inuous . The correspond-
ing energy transfer [Eq. (6)] is 

Tm=ylE' with 7 ^ ( 1 ~ c o s 0 c m ) ^ « i . (8) 

The 7 ! parameter is expressed here as a func t ion of the 
scattering angle in the center of mass. The choice of 9cm can 
be roughly de termined f rom the shape of 

os(E',nc) , 

which is a very sharp func t ion near n c = 1. 
By using these defini t ions, the t ranspor t equat ion [Eq. (2)] 

can be wri t ten as follows: 
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with the SET opera tor , 

rE+T, 

'E 
I,(x,E)= fE+Tm dE'XsJ{E',T)<i>,(x,E') . 

JE 



In this last expression, the integrand is a smoo th func t ion 
of E' over the small interval (E,E + Tm), and therefore a first-
order Taylor expansion around E can be pe r fo rmed while the 
Tva lue is f ixed: 

Zsj(E',T)<t>i(x,E') = XsJ(E, Tmx,E) + (E' - E) 

d[ZsJ(E,T)<S>,(x,E)] 
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With the new variable T, Eq. (9) becomes 
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From Eq. (5), one sees t h a t 

IsJ(E, T) = XSi0(E, T)P,[m.] 

where nL is given by Eq. (7) (£" = E). Since T < Tm is small, 
P / ( i i L ) can be approx imated by a linear func t ion of T. (This is 
no t t rue , of course, for 2 S 0 , which is almost singular for 
T = 0.) A first-order expansion of Piifi/J gives 
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From the def ini t ion of Legendre polynomials , 

(1 - ii2)P,(n) ~ 2M P!(n) = -1(1 + 1 )P,{n) 

and F / ( l ) = 1, one f inds 

Moreover, t he derivation of fii(T/E) given b y Eq. (7) provides 
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Finally, the scattering kernel can be approx imated as 

m2 T ZsJ(E,T)^XSi0(E,T) 1 - / ( /+1) 
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and Eq. (10) becomes 
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Here, S(E) is the usual s topping power restricted to SET 
interact ions, and 2set(£) is the corresponding macroscopic 
scattering cross sect ion. In the above derivation, the T2 terms 
have been neglected. 

The quan t i ty Ii(x,E) can now be in t roduced in Eq. (2 bis). 
By using Eqs. (11) and (4b) , the t ranspor t equat ion takes the 
final fo rm: 
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As expected, the Fokker-Planck opera tor appears natural ly 
when the cont inuous interact ions are correctly handled . 

The scattering cross section, 2set, has been eliminated 
f rom the formalism. This is very impor t an t because it takes a 
large value for Coulomb interact ions (it goes to inf ini ty for un-
screened potentials) . In the lef t side of Eq. (15) , the total 
cross section involves only the LET part of all scattering 
processes (discrete interact ions) and of course all absorpt ions. 

Let us consider a few cases: 

1. The test particles are fast ions. For electronic interac-
t ions (m2 = m e ) , the rat io m j ^ r r t i is very small, and the deflec-
t ion opera tor is negligible. Moreover, all energy transfers can 
be considered as small, dcm = it, 7! = 72 [Eq. (8)] , and no LET 
term occurs in Eq. (15) . For nuclear interact ions, on the 
o ther hand , mJAmi can be large, when, for example, light 
ions are impinging on a heavy material (m2lml » 1). In this 
case, the deflect ion term has t o be kep t in Eq. (15) . This is 
probably the reason why H o f f m a n et al. have met numerical 
difficult ies for pro tons incident on a nickel target. 

2. The test particles are electrons. Here, also, in most 
cases there is a need for a "def lec t ion ope ra to r . " Some of the 
discrepancies be tween exper imenta l data and ANISN calcula-
t ions could be explained in this way. 2 

NUMERICAL ASPECTS 

The usual DSN codes are no t able t o solve Eq. (15), al-
though the me thod itself should, allow such a Fokker-Planck 
operator . For example, a finite d i f ference scheme for m deriva-
tives will lead to connect ions among three directions, and 
inner i terat ion schemes can incorpora te such a scattered 
particle source. 

Another problem arises when the mul t igroup fo rm of 
Eq. (15) is derived. Af te r integrat ion over the range (Eg,Eg^j, 
the CSD part of this equat ion becomes 

SiEg.Mx.E^fi) - S(Eg)<t>(x,Eg,n) . 

The first term represents particles slowing down f r o m group 
(g - 1) to group (g), and the second te rm the removal f rom 
group (g) to group (g + 1). One must then write this expres-
sion as proposed by Greenspan and Shvarts3: 

O 3 ) with 
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in which <j>(x,E,ii) is approximated by a known weighting 
func t ion W(E) over the interval 

The simplest way is t o assume tha t b o t h tj>(x,Eg^,ii) and 
<p(x,Eg,n) are propor t ional to the group f lux 4>g(x, /j), as done 
by H o f f m a n et al.1 Unfor tuna te ly , by doing tha t , the CSD 
process is smeared ou t , since connect ions be tween group 
fluxes are absent in the formalism. 



On the o ther hand , the def lect ion term in Eq. (15) , which 
does no t involve any slowing down, can be expressed only as a 
func t ion of <j>g(x, ju): 

, (17) 

with 

In the f ramework of a general s tudy on ion beam-plasma 
interact ions, we intend to develop a DSN code based on the 
mul t igroup fo rm of Eq. (15) by keeping only the Fokker-

Planck operator . This will show how t o handle the def lect ion 
opera tor 

f rom the numerical point of view. The conclusions t o be 
drawn should keep their meaning when discrete interact ions 
are in t roduced. 
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