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Fig. 1. The generalized decay constant as a function of buckling for 
various degrees of linearly anisotropic scattering. 

Also the more general Figs. 1 and 2 in Ref. 1 agree with 
the results obtained in Refs. 7 and 8 (apart from the fact that 
the vertical border lines in Fig. 1 should have been drawn at 
1 Ifi at ±3 instead of at ±4). From Ref. 7 it is clear that re-
gion II in Fig. 2 of Ref. 1 frequently contains four imaginary 
eigenvalues. When they disappear, it is probable that they go 
over into four complex eigenvalues, just as is the case for 
purely linear anisotropy. However, this has not been con-
firmed by calculations. 

N. G. Sjostrand 
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Reply to a Comment on "Eigenvalues of 
the Neutron Transport Equation 

with Anisotropic Scattering" 

The original idea in our paper1 was to give a general 
analytical method to determine the number and the mathe-
matical property (real, purely imaginary, or complex) of the 

discrete eigenvalues of the monoenergetic neutron transport 
equation with anisotropic scattering. Sjostrand's comment2 

suggested that his numerical study on the time-dependent 
transport problem can be compared with our work and his 
numerical result show agreement with our analytical predic-
tion. 

Sjostrand2 also discussed the existence of the complex 
discrete eigenvalues. Just as illustrated in Sec. IV of Ref. 1, 
the difficulty is how to determine the condition on parameters 
c, /,, f2, • . • for the existence of complex eigenvalues, where 
c is the number of the secondary neutrons per collision and 
/i, / 2 , . . . are the Legendre coefficients of the scattering func-
tion. This problem for the linearly anisotropic scattering case 
had been considered by Thielheim and Claussen.3 In Fig. 1 of 
their paper, they give a boundary of the complex discrete 
eigenvalues without showing how to determine such a bound-
ary. A very basic property of the quadratically algebraic 
equation 

x2+2ax+b = 0 , (1) 

may help us to solve this problem. This property is that the 
boundary of the complex roots of Eq. (1), a2 - b = 0, is the 
condition that Eq. (1) has double roots. With this in mind, we 
may ask whether this simple property is true for the present 
problem. That this property is correct for the linearly ani-
sotropic scattering case can be shown as follows. 

The discrete eigenvalues for the linearly anisotropic scat-
tering case are roots of the equation 

A(t>2) = 1 + 3c/((l - c)v2 - c[ 1 + 3/i(l - c)v2]f(v2) , 

= 0 , (2) 
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Fig. 1. Classification of discrete eigenvalues in parameter space for 
linearly anisotropic scattering. 
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where 

/ V ) 

In addition to Eq. (2), the double roots of Eq. (2) also satisfy 
(d/dv2) A(v2) = 0 or 

3/ ,( l - C)[l -f(v2)] - 5 [ l + 3/1(1 - c)p2] p j l ? - j r ! r j ] 

= 0 (3) 

If we could eliminate v2 from Eqs. (2) and (3), the equation 
thus obtained would be the boundary we desired. Un-
fortunately the algebraic manipulations are too tedious to be 
carried out in detail. A feasible method is to solve c and fx 
from Eqs. (2) and (3). The final result can be expressed as 

f 2\ - 1 + 3(f2 - 1)[1 -f(v2)] 
1 + (v2 - 1)[1 ~/ ( I ' 2 ) l [ l + 2/(P2)] 

6 f V - 1 ) [1 - f ( v 2 ) l 2 

l / / ( f J ) 1 + ( e J - 1)[1 -/(")] 

(4a) 

(4b) 

compatible with those numerical results developed by Thiel-
heim and Claussen3 as well as Sjostrand.4 (See, in particular, 
Fig. 2 in Ref. 3 and Fig. 1 in Ref. 4.) 

Perhaps a similar technique can be used in studying the 
case of quadratically anisotropic scattering as well. We cannot 
have recourse to machine computation due to the pro-
hibitively large amount of manipulations. The computation is 
still in progress. 

The vertical border lines of Fig. 1 in Ref. 1, mentioned by 
Sjfistrand,2 may need some explanation. In preparing this 
figure,/2 = -1 /20 is taken as an example. With this particular 
value, the condition for a positive scattering function [Eq. (7) 
in Ref. 5] becomes < < j , which is shown correctly as 
border lines in the figure. 

Trine-Yie Dawn 

in which v2 is regarded as a parameter varied from to 0. 
Equations (4a) and (4b) are a parametric representation of the 
boundary of the complex discrete eigenvalues in the parameter 
(c, l//,)-space (shown in Fig. 1). From Eqs. (4a) and (4b), it 
can be easily proved that c °° and •* 7r2/48 as v2 -* -0 , 
which is discussed by many authors.3'4 The present result is 
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