
instead of using a linear time interpolation of the shape 
function within an "outer" time step (as in the QS method), 
the interpolation, i.e., the ratio (Z/+J/Z/) at time rn in Eq. (7) 
of Ref. 1, 

nr,T„) = ZI*l(r)+ZI+l*I+i(r) , (2) 

is determined variationally. The full shape function is com-
puted only at the outer time steps as in all QS methods, the 
lumped parameters being calculated using the interpolated 
shape. The Hauss and Kastenberg method does not prescribe 
how to compute the full shape function at these outer time 
steps; apparently, in the numerical example finite difference 
is used. Hauss and Kastenberg claim two advantages: 

1. faster convergence of outer iterations 

2. use of coarser outer meshes. 

It seems that point 2 is the primary motivation, although it 
is not stressed by Hauss and Kastenberg. When strong feed-
backs are present, point 1 is not obvious in the light of the 
earlier remarks made in this Letter. In fact, in the presence 
of strong feedbacks, all the QS methods, including their 
synthetic variations,1"3 will suffer from poor convergence and 
increased outer iterations. 

In the same light, one more observation is to be made. 
Hauss and Kastenberg make a claim (p. 328 of Ref. 1) that the 
new interpolation variationally determined not only gives 
better values of lumped parameters (as we note) but also 
could provide a "next-iterate guess" of the flux shape on 
again reaching 7) + 1 , thus reducing the number of subsequent 
space-dependent calculations required at this time. Since the 
outer extrapolated shape ^ / + 1 ( r ) at 7}+1 is incorrect due to 
the lack of proper accounting of feedback effects, then by 
"refitting" the function by using incorrect shapes at time 
7}+ 1 , one cannot obtain a correct shape, especially if the 
correct shape is not bracketed, as will be the case in the 
presence of strong feedbacks. In the numerical example given 
by Hauss and Kastenberg, they obtain a very good conver-
gence in the shape on reaching the outer time step 7}+ 1 , 
obviating the need for outer iterations altogether, mainly 
because the nonlinear feedback effects were ignored. 

J. B. Doshi 
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Reply to " O n the Quasi-Stat ic Synthesis 
Method for Space-Time 

Dynamics P r o b l e m s " 

Having reviewed the Letter by Doshi,1 we felt it necessary 
to reply to several erroneous points presented there. First, we 
take exception with Doshi's claim that the essential features 
of the method presented in a paper by him and Grossman2 are 

'J. B. DOSHI,Nucl. Sci. Eng., 71, 343 (1979). 
2J. B. DOSHI and L. M. GROSSMAN, Nucl. Sci. Eng., 65, 106 

(1978). 

identical to those of the quasi-static synthesis (QSS) method.3 

Aside from the fact that both methods employ a combination 
of flux-factorization and synthesis techniques to solve the 
space-time equations (as do a few other methods, notably 
Refs. 4 and 5), there is very little that the two methods have 
in common. In fact, as is pointed out below, it is the very 
differences between the two methods that should inevitably 
lead to the success of the QSS method as a general approach 
for solving space-time kinetics problems. Furthermore, Doshi's 
statement that the essentials of a "quasi-static (QS) synthesis" 
method were originally introduced by him and Grossman is 
in error. The method finds its origin in the linear interpolation 
technique of the improved QS method developed by Meneley 
et al.4 In this technique, the rapidly varying amplitude func-
tion is calculated via point kinetics, while the space-time-
dependent flux shape is blended (in an a priori manner, i.e., 
linearly with respect to time) from trial shapes calculated at 
the inner and outer bracketing time steps. Besides this ap-
proach, Kessler5 also employs a method that relies on a combi-
nation of the ideas of the QS and synthesis methods, although 
in a somewhat reversed sense. In Kessler's method, time-
discontinuous synthesis is used to determine the rapidly 
varying time-dependent amplitude functions, while flux shapes 
are obtained from an iterative solution of the QS shape func-
tion equation. Thus, it should be clear that the essentials of 
a method that somehow combines the ideas of flux-factoriza-
tion and time-synthesis have existed prior to the paper by 
Doshi and Grossman. In this regard, it should also be pointed 
out that the title of our Note,3 "Introduction of the Quasi-
Static Synthesis Method for. . . ," is not meant to imply an 
introduction of the general idea of combining QS and syn-
thesis methods, but rather the introduction of the specific 
method (details included) proposed in the Note. 

It is incorrect to compare the method developed by Doshi 
and Grossman to the QSS method, since the aims of the two 
methods are of a completely different nature. The former 
technique is specifically tailored to solve a restrictive (if not 
unrealistic) transient, that is, one in which the reactor proper-
ties over all but a small segment of the core remain unchanged 
for the duration of the transient. The QSS method, on the 
other hand, is an attempt at developing a general approximate 
method that is applicable to a wide range of space-time dy-
namics problems. However, since Doshi appears to be repre-
senting the method developed by him and Grossman as a 
general approach for solving the space-time equations, a 
brief reexamination of the method is in order. The class of 
expansion functions that Doshi chooses to describe the time-
dependent flux shape over the bulk6 of the reactor core 
consists of the eigenfunctions of a single operator equation, 

LjjQk.n = A, n , da) 
where 

L,= V2 + 2,/D) , (/' = 1, 2, . . . , G) . ( lb ) 

The D,'s and Z / s in this single equation are those correspond-
ing to the initially critical reactor state. The main problem 
with this technique is in being able to accurately represent 
flux shapes that occur during the transient using a reasonable 
number of expansion functions. This is especially true if 

3B. I. HAUSS and W. E. KASTENBERG, Nucl. Sci. Eng., 69, 326 
(1979). 

4D. A. MENELEY et al., "Fast-Reactor Kinetics-The QX-1 Code," 
ANL-7769, Argonne National Laboratory (1971). 

SG. KESSLER,Nucl. Sci. Eng., 41, 115 (1970). 
6A "pulse" function f/(z,t) is used to reproduce the localized change 

in reactor properties. 



reactor properties change significantly, as is the case in the 
presence of strong reactivity feedback. As pointed out by 
Henry,7 if approximate fluxes for a range of operating condi-
tions are to be found by the synthesis procedure, it is intui-
tively unappealing to generate expansion functions using an 
operator equation corresponding to only one condition in 
this range. Thus, this procedure is not recommended for most 
practical problems. The question then arises: How should 
expansion functions be chosen? The obvious answer is to pick 
functions that bracket the spatial/spectral shapes expected 
throughout the transient, that is, instead of generating expan-
sion functions using an operator corresponding to a single 
reactor state, use operators bracketing a range of conditions 
expected during the transient. It was with this in mind that 
one of the authors (BIH) advised Doshi (during his stay at 
the University of California at Los Angeles as a post-doctoral 
fellow) that a set of bracketing expansion functions might be 
obtained by using the fundamental X modes corresponding to 
various hypothetical reactor configurations anticipated during 
the transient. There are, however, several problems associated 
even with this procedure. First, since various reactor types 
span a wide range of dynamic response characteristics, it is 
extremely difficult (i.e., requiring a certain amount of clair-
voyance) to determine an a priori set of reactor configurations 
that bracket those occurring during the transient. Further-
more, because all expansion functions are used in the calcula-
tions at each time step, even though many of these trial 
functions may be inappropriate at this specific time, the 
synthesis technique can become unnecessarily expensive, 
approaching that of a full finite difference calculation. Al-
though this second difficulty can to some extent be obviated 
by employing a discontinuous time-synthesis approach,8 the 
type of synthesis method proposed by Doshi does not lend 
itself well to transients where reactor properties (and/or flux 
shapes) change significantly with time. In contrast to this 
procedure, note that the QSS method uses only the inner 
and outer trial shapes of a given major time interval to synthe-
size shape functions within this interval. Since these bracketing 
trial shapes are calculated as the transient progresses (rather 
than being chosen in some a priori manner at the beginning 
of the transient), one is fairly confident of obtaining reason-
ably good representations of shape functions within the major 
time interval. 

In his Letter, Doshi1 asserts that in the presence of strong 
feedback the advantages of the QSS method over the con-
ventional QS method become negligible. His main arguments 
for this conclusion are given below. 

1. When reactor properties are initially "extrapolated" to 
the outer time 7)+1 , one does not have knowledge of the 
changes in these properties due to feedbacks which are not yet 
evaluated. Thus, in the presence of strong feedback, the initial 
outer trial shape calculated from these incorrect reactor prop-
erties will be grossly in error and may no longer bracket the 
true flux shape. 

2. Since the initial outer trial shape at 7}+1 (i.e., j may 
be incorrect, due to the lack of proper accounting of feedback 
effects, then any synthesized flux shapes (and conditions that 
they generate via the reactivity parameters) will also be in-
correct, leading to an increased number of outer iterations. 
Because of this increase in the number of outer iterations, 

7A. F. HENRY, Nuclear Reactor Analysis, MIT Press, Cambridge, 
Massachusetts (1975). 

8J. B. YASINSKY,Nucl. Sci. Eng., 29, 381 (1967). 

Doshi concludes that the QSS method will approach that of 
the conventional QS method in terms of computational 
effort. 

In answer to the arguments Doshi raises, the following 
comments seem appropriate. 

1. As stated in our Note,3 the diffusion theory parameters 
needed for the initial detailed solution at the outer time step 
(7}+1) are found from a "fixed-shape" point kinetics calcula-
tion of the core. This is done by assuming that the flux shape 
at the inner time 7> (i.e., persists throughout the major 
time interval. Since this constant flux shape assumption is the 
only approximation made and since the major time interval 
comprises only a small part of the entire transient, one should 
obtain a fairly accurate estimate of spatial feedbacks occurring 
over the time interval. Thus, Doshi's assertion that we have 
very limited (if any) knowledge of the feedback effects at the 
extrapolated time 7}+ 1is incorrect. Also, the initial outer trial 
shape (i.e., while not exact, should be fairly close to 
the true flux shape at this time. 

2. To answer the second point Doshi raises, consider 
Fig. 9 in Ref. 3, which illustrates the extrapolation capabilities 
of the QSS method. In this figure, the inner trial shape at 
0.25 s is identical with the exact flux shape, while the (initial) 
outer trial shape at 0.5 s is grossly in error, being much less 
tilted than the true shape at this time. Note, however, that the 
synthesized flux shape at 0.39 s (which is more tilted than 
either the inner or outer flux shapes) is still very close to the 
corresponding exact shape. This shows that if the outer 
bracketing flux shape (which depends to some extent on 
approximate conditions at the outer time step) is somewhat 
in error and/or does not bracket all shape functions within 
the major time interval, the method has enough flexibility 
to give synthesized flux shapes that are still quite good. 
Thus, at given times within the major time interval, the QSS 
method combines the inner and outer trial shapes such that 
they best represent the true shape functions at these times. 
Because of this, a vast improvement on flux shapes (and 
conditions that they generate via the reactivity parameters) 
can be obtained at times within the major time interval. In 
contrast, the linear interpolation procedure of the conven-
tional QS method requires that shape functions within the 
major time interval vary linearly with respect to time between 
the inner and outer trial shapes. As a result, the method 
affords no correction on the flux shape within the major time 
interval but only after another full trial shape calculation has 
been performed at the outer time step. Therefore, if reactor 
properties extrapolated to the outer time step are grossly in 
error, so that the resulting initial outer trial shape is "in-
correct," one would expect that the number of iterations 
required for convergence of the QSS method would be much 
less than that required for convergence of the conventional 
QS method. Furthermore, although the number of iterations 
for either method will increase in the presence of strong 
spatially dependent feedback (where flux shapes can vary 
in a highly nonlinear fashion with time), this increase should 
be much smaller for the QSS method than for the conven-
tional method. 

Another important point not yet stressed relates directly 
to the linear interpolation approximation of the QS method. 
In those situations where the true flux shape changes in a 
nonlinear manner with respect to time, it seems obvious 
that no matter how accurately trial shapes are known at the 
bracketing time steps (i.e., 7} and 7}+i), shape functions 
generated (via the linear interpolation approximation) at 



times within the major time interval will necessarily be in 
error. This arises because the shapes at these intermediate 
times are not a result of the true reactor conditions but 
rather are determined from the a priori mixing (i.e., linear 
with respect to time) of the bracketing trial shapes. Thus, 
convergence of the QS method to correct solutions seems 
rather questionable for these situations. This problem is not 
anticipated with the QSS method because intermediate shape 
functions are not constrained to vary linearly between the 
inner and outer trial shapes, but only to satisfy the true 

reactor conditions (in a weighted integral sense) at the times 
in question. 
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