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dv ; jx >0,(10) 

MM) = | [ A + (M ) +A"(ji)] = l - C M t a n r V , (10a) 

and A^ju) a re the boundary values of the function 

A (z) —=l-cz tan h'1 \ ( l l ) N 2 J - i z-v z 

as it approaches the cut [-1,1] f rom above and be-
low the rea l axis, respectively. 

If the boundary condition requires that the in-
coming distribution is zero: 

iK-6,|x> °) = * ( M < 0 ) = 0 , (12) 
Equation (10) reduced to 
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where we have defined 
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V+LU 
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The singular equation for ju<0) also follows 
f rom the foregoing resul ts by symmetry. 

Now consider 

*(*>*) = 2 Z d y ; M * ) > 0 > ( 1 5 ) 

which is recognized as the extension of (2), subject 
to (12), to the right half of the complex plane. The 
analysis leading to (10) gives, in this case, 

A i z ) H x , z ) = l l ^ - ^ z e'x/zf(b,z). (16) 

fl dv = ex/v°f{b,±v 0). 
J-1 VT V0 

Setting AT = b in (13) and (17), we get 

(17) 

ri ( fW(M 
eb/"f(b,ix),( 18) 

/ ( M o ) =f(b,-v o), (19) 

respectively. These last two equations for the 
emerging distribution correspond, apart f rom no-
tation, to the resul ts derived, in a somewhat dif-
ferent way, by Leonard and Mullikin2. 

The advantage of this t ransformation a r i s e s 
f rom the fact that a general method for treating 
singular integral equations is available3 . Conse-
quently, (10) is a simpler starting point than the 
original t ransport equation (1). Moreover, this 
transformation provides a different way of treating 
transport problems in this geometry f rom the 
method of singular expansion modes developed by 
Case4. What is more important, the success of 
this method in plane geometry serves as the pr ime 
motivation for investigating the t ransform p roper -
ties of the integral equations in spherical and 
cylindrical geometries where the eigenfunction 
expansions become intractable1 . The application 
of this approach to the one-dimensional cri t ical 
problem, as well as a comparison with the resul ts 
obtained previously by means of Case ' s formula-
tion5, is given in Reference 1. 

George J . Mitsis 

Since the left side of (16) vanishes at the roots 
± v0 of A(2) = 0, the right side must also vanish at 
these two points. Hence we have the two conditions 
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Effective Surface in Lattices in the 
Calculation of Resonance Integrals 

The exact and approximate method for the cal-
culation of the Dancoff Factor (C) has been ex-
amined by many people1"3. However, little atten-
tion has yet been paid to the relation between the 
effective surface (Seff) and the Dancoff Factor . 

Recently, Levine4 '5 obtained a new relation 
empirically f rom a Monte Carlo study and has d is -
cussed it in t e rms of the Bell approximation for 
the collision prooability. His expression is 
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DE ff = S e f f / S = ( l - C ) / ( l + 0 . 1 C ) (1) 

where S is the actual fue l -sur face area . This r e -
lation is discussed below in connection with a study 
of the escape probability (P) in latt ices. 

We have examined the Bell approximation for 
the escape probability both for square and slab 
lattices. The Bell approximation for the escape 
probability f rom the absorber lump in lattices ( P B ) 
is6, 

PB = (l-C) Po/ [l-C(l-A)] (2) 

A = So^o^o (3) 

where P0 is the escape probability for an isolated 
fuel rod, 

Z is the macroscopic total c ross section 
and H is the mean chord length. 

Suffixes 0 and 1 denote the absorber and moderator 
region. The main approximation in (2) is that the 
collision probability of incoming neutrons in the 
absorber lump is replaced by the one for an isolat-
ed lump, A. Since the collision probability depends 
to some extent on the angular distribution of the 
incoming neutrons, (2) is only exact for the ab-
sorber lumps distributed randomly and may fai l 
for the systematic lattice. For hexagonal lattices, 
(2) was examined at BNL by Monte Carlo calcula-
tions and shown to be satisfactory7 . The accuracy 
of the approximation, however, depends on the lat-
tice arrangement, so (2) has been checked below 
for square and slab lattices. 

KITTY HAWK8 was used for one-velocity Monte 

6G. I. BELL, Nucl. Sci. Eng. 5, 138 (1960). 
7L. W. NORDHEIM, Symp. Appl. Math., 11, 58 (1961). 
®R. A. DANNELS and S. M. HENDLEY, "KITTY HAWK -

A Monoenergetic Monte Carlo Code to Calculate Neutron 
Capture Probabilities," WCAP-2256 (1963). 

Carlo calculation in square lattices. So, and d 
(distance between rods) a re taken as parameters , 
which are shown in Table I. The radius of the ab-
sorber rod was fixed to 0.40 cm because one of 
four parameters is only a scaling factor . P and 
PB a re shown in Table I. The C factor in the cal-
culation of PB is obtained taking 16 neares t neigh-
bors into consideration with the part ia l shadowing3. 
As is seen f rom Table I, P is well approximated 
by PB with the e r r o r less than 1%. If we define 
Co by (2), in which PB is replaced by P , Co can be 
taken as constant and equal to C, fo r the range of 
2o 4 o > 0.4, with the uncertainty of 3%. 

For slab geometry, P can be obtained by an in-
finite se r ies of E3 functions9. 

__J_ ( l - g - » o * ) ( i - g - » i * ) 

= 2 ^ [ 1 - 2 £ 3 ( M - 2 E O i ) + 2 P ] (4) 

F= £ {2£3M&0+M - £sI>o-M&o+&i)] 
( 5 ) 

where b{ is the multiple of the thickness by 

and E3{X) = F™ e'xu u'3 du . 

The convergence of the se r i e s is very fast . P and 
PB for slab lattices a re shown in Table II. C for 
slab is given by 2£3(&I). The e r r o r of PB is with-
in 5% of P . The e r r o r is , however, about 30% of 
the change of P due to the lump interaction in the 
above range. Since this change is important, the 
approximation (2) in slab geometry is not sa t i s -
factory for t ransparent absorbers . 

TABLE II 

Escape Probabilities for Slab Lattices 

2 bl 2b q P PB 

0.4 0.6 0.49297 0.46809 
(0.51457)a 1.0 0.36721 0.35013 

2.4 0.18877 0.18422 

0.6 0.6 0.55785 0.53392 
(0.38310)a 1.0 0.43174 0.41373 

2.4 0.23409 0.22859 

0.8 0.6 0.59439 0.57347 
(0.28865)a 1.0 0.47086 0.45418 

2.4 0.26481 0.25920 

1.0 0.6 0.61674 0.59919 
(0.21938)a 1.0 0.49604 0.48145 

2.4 0.28626 0.28101 

aC Factor 

9W. ROTHENSTEIN, "Collision Probabilities and Reso-
nance Integrals for Lattices," BNL-563 (T-151) (1959). 

TABLE I 

Escape Probabilities for Square Lattices 
(radius of cylindrical absorber = 0.40 cm) 

Eifcm"1) d( cm) 22<>fto P PB 

1.0 1.0983 0.4 0.64760 ± 0.00228 0.64593 
(1.4)a 0.8 0.47565 ± 0.00302 0.47417 

2.0 0.25335 ± 0.00135 0.25694 

1.2198 0.4 0.69610 ± 0.00219 0.68821 
(1.96)a 0.8 0.52165 ± 0.00414 0.52116 

2.0 0.29420 ± 0.00181 0.29270 
1.4 1.0983 0.4 0.69330 ± 0.00220 0.68878 

0.8 0.52469 ± 0.00414 0.52184 
2.0 0.29353 ± 0.00181 0.29323 

1.2198 0.4 0.72825 ± 0.00212 0.72286 
0.8 0.56252 ± 0.00573 0.56198 
2.0 0.32703 ± 0.00239 0.32593 

aModerator to absorber volume ratio 
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Now let us denote the effective surface for 
monoenergetic neutrons by Se. Se is obtained by, 

P(Z0J^o,C) = Po(ZoJM (6) 

S e / S = lo/toe =De. (7) 

For a square lattice of cylindrical absorbers , P is 
approximated by PB. Expressions for P0 in the 
limit of large and smal l Zo^o can be derived f rom 
the se r i e s expansion of Case et al10 as follows: 

Po = 1 - 2 / 3 2o4o (2o£o < 1) 

and 

Po = 
Z o ^ o 

( Z o 4 o > l ) 

so that Se/S approaches (1-C) when ZGJ£ O becomes 
infinite and approximately ( l - C ) / ( l + C / 2 ) when 
Zolo becomes zero. Se/S is shown in Figure 1 as 
a function of Zo^o in intermediate range. Se/S 
becomes below 90% of (1-C) for the range of 
Zo&o^ 1. 

Similar curves can be obtained for slab geome-
try if the approximation (2) is used. It is not co r -
rect , however, to apply this to the slab geometry, 
and Se/S for slab is obtained using the exact P 
(shown in Figure 1). Se/S in slab geometry is a 

complicated function of b0 and &i. However, the 
deviation f rom the value (1-C) is smal l and the 
average of Se/S with a weighting function can be 
taken (1-C) with a little error,, 

For square and hexagonal latt ices, it is neces-
sary to per form an integration to obtain S eff /S. 
For a special case, it is possible by an analytical 
approach. If the potential scattering in the ab-
sorber lump is zero and the NR approximation is 
adopted, Dea is given by 

D m = V W . (8 ) 

Further , faa Po{Zoloeii)du = faaP(Zoito,C)du (9) 

where va is the microscopic absorption c ros s 
section of the fuel element., The integration can be 
performed for the non-Doppler broadened case, if 
the corrected Wigner 's rational approximation9 is 
used for P 0 . 

P 0 = 
1 

1 + Zo^o - h ZoJPo (10) 

l+/*Zo4o 

After the integration and ar rangements , 
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Fig. 1. Effective surface for monoenergy neutrons 
(De = I Se/S) as a function of Zo^o. 

^K. M. CASE, F. de HOFFMAN and G. PLACZEK, 
Introduction to the Theory of Neutron Diffusion, Government 
Printing Office, (1953). 

/ ( C ) = ( 1 - C )
 1+Mi-c) + 2VMnc) (12) 

1+2 V^(l-C) 
where E0 is the energy, 

r y is the absorption width of the resonance 
do is the resonance peak c ros s section and 
N is the atomic number density of the ab-

sorber . 
The effective surface is obtained f rom these by 

£eff =f(C)/f(o) . (13) 
To represent the second t e r m correct ly in the 
limit of Z 0 4o < < 1, h should be taken as 1/3. The 
dependence of Dett on C is shown in this case in 
Figure 2. This is well approximated by (1) for 
C = 0 ~ 0 . 5 . 

Z)eff for the more general case is obtained by 
the ZUT code11, in which lattice interaction is taken 
into consideration by (2). The actual values were 
taken for the physical constants of U 0 2 . The 
radius of the absorber lump and C factor were 
changed arb i t ra r i ly . At f i r s t Deff for separa te 
resonance levels were examined. The resul t s show 
that the correct ion factor to (1-C) for D\efi is about 
13% and 7% of C for the levels of 6.68 eV and 

nG. F.KUNCIR, "ZUT, TUZ: A Program for the Calcu-
lation of Resonance Integrals," GA-2525, (1961). 
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Fig. 2. Effective surface for a resonance without 
Doppler broadening (cylindrical lump). 

36.8 eV, respectively, at the temperature of zero 
K. At 293 K, these become about 12% and 7%, r e -
spectively. The dependence of the correction fac-
tor on is not distinct for the range of Zpo&o = 
0.16 ~0.64, where Zp o is the macroscopic potential 
scattering cross section of U0 2 , although a slight 
increase is seen in the correction factor with the 
increase of Ho which is expected from Figure 1. 

Calculations for all resolved levels were run at 
293 K to obtain the relation between Deff and C in 
total resonance absorption in U238 . The results 
again show that (2) is a good approximation. The 
ten per cent correction of C for Deff is considered 
as the average for all resonance levels. 

As a conclusion, Levine's relation, (1), is well 
suited to the calculation of Deu for square and 
hexagonal lattices for the normal absorber radius 
although it is questionable to extend this to an un-
practically large absorber, say over 1 in Spo^o, 
as can be inferred from the curve in Figure 1. It 
is recommended, however, to use the classical 
factor (1-C) for Deff in slab geometry. 

H. Aisu 
Mitsubishi Atomic Power Industries and 
Westinghouse Atomic Power Division 

Fast Fission Factors in Slightly Enriched 
Uranium, Light-Water-Moderated 

Slab Lattices* 

The fast fission factor of reactor core assem-
blies is usually inferred from measurements of the 
ratio of U238 to U235 fission rates in the fuel of the 
lattice (= 628). These measurements are generally 
normalized to the results of an auxiliary experi-
ment, the so-called double-fission-chamber exper-
iment1 , whose uncertainty heavily contributes to 
the overall margin of e r ro r of the data. 

The present note describes a measurement of 
62S in slightly enriched uranium/light-water-mod-
erated slab lattices, performed by a technique 
which differs to some extent from the methods 
currently used1 '2 '3 and yields data of satisfactory 
accuracy. 

The lattice investigated consisted of an array 
of bare U metal slabs enriched to 1.25% U235 . The 
slabs were arranged in rows of continuous sheets, 
0.122 in. thick, spaced to give the desired volume 
ratios. The water-to-uranium volume ratios in-
vestigated were nominally 4:1, 3:1, 2:1, 1.5:1, and 
1:1. 

The facility used was a miniature assembly, 
measuring 16 in. high by 12 in. wide by 12 in. long, 
contained in an aluminum tank surrounded on all 
sides, except the top, by re in. of cadmium sheet 
and 3 in. of paraffin. The whole assembly was 
irradiated in the tunnel under the Brookhaven 
National Laboratory graphite reactor. Previous 
work had proved the feasibility of such small-size 
assemblies for measurements of microscopic 
lattice parameters 1 . 

The ratio of U238 to U235 fission rates in the 
uranium was deduced from the fission-product 
activities of two uranium foils, one enriched to 
1.25% U235 and one depleted to about 3 parts/108 

U235 , irradiated bare at equal flux positions in the 
fuel of the lattice. The foils were rectangular 
(0.005 in. thick by 0.122 in. wide by 0.500 in. long) 
and were inserted into the slab sandwiched between 
0.001 in. A1 catchers, as shown in Figure 1. The 
irradiation time was 40 min. 

The induced gamma activities of the detectors 
were measured by a 2 in. dia. X 2 in. high Nal(Tl) 
single-channel analyzer. The beta background was 
eliminated by a | in.-thick pure A1 shield. Dis-
crimination against the activity from the U238 cap-
ture products (u239 and Np ) was achieved by 
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