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Fig. 1. Radioactive decay of Mn54 present in irradiated foils of iron enriched in Fe5 4 . 

X 5 4 = decay constant of Mn54 

/ 58 = T.P.A. ion chamber factor for Fe59 

/ » 4 = T.P.A. ion chamber factor for Mn54 

fah = thermal neutron flux 

</>/ = fast neutron flux 

ti = irradiation time 

and to = time between end of irradiation and 
measurement. 

This equation is only approximate in that it ne-
glects the activity of Co60 produced subsequent to 
the decay of Fe59, but this is unimportant when the 
ratio of thermal- to fast-neutron flux is less than 
about 5. Enriched iron foils have been irradiated 
together with nickel and cobalt monitors for 41 d 
in a monitoring stringer in the graphite moderator 
of the Advanced Gas-Cooled Reactor at Windscale, 
where the ratio of thermal- to fast-neutron flux is 
about 20. In this experiment C can be determined 
more accurately than for irradiations in hollow 
fuel element facilities in materials testing reac-
tors where the ratio of thermal- to fast-neutron 
flux is at least 10 times lower. The value of C ob-
tained from the AGR irradiation, allowing for the 
additional activity of Co60, which is -20% of the 
activity of Fe59 in this case, is (4.0 ± 0.8) x 10"3. 

The values of a58 and / 5 8 a re not known with suffi-
cient accuracy to enable this measured value of C 
to be applied to irradiations of foils with different 
^58/^54 ratios. 
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On the Transport Equation 
in Plane Geometry* 

We propose to show that the stationary, mono-
energetic transport equation, under the restrict ions 
of plane symmetry and isotropic scattering, is 
equivalent to a singular integral equation with the 
space variable appearing as a parameter . This 
transformation was suggested by the work of Leon-
ard and Mullikin2, where complex t ransforms of 

•This work is part of the doctoral thesis1 submitted to the 
Nuclear Engineering Department of the University of 
Michigan and performed under the auspices of the U.S. 
Atomic Energy Commission. 
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the plane and spherical neutron densit ies a re used 
in conjunction with the respective integral equa-
tions for the densities to a r r ive at exact criticality 
expressions for the two geometr ies . 

Under the above assumptions, the angular neu-
tron density \p depends on the single-position v a r -
iable x{-b ^ x £ b) and the direction variable = 
/i, and sa t is f ies the equation 

^ = | f_y(x,n')dn', (i) 

where c is the mean number of secondaries per 
collision, and distance is measured in units of the 
total mean f r e e path. 

Alternatively, (1) can be written in the integral 
equation form: 

\f/(x,iu) 
b+x x - y (2) 

= e 11 \l/(-b,n) +%-f*bp(y)e * dy, jti > 0, 

where \p(-b,\i >0) is the incoming distribution at 
the boundary, and p(x) denotes the neutron density: 

ft*) =f*^(x,v)dp = f0\\p(x,v) + \p{x,-v)} dp. (3) 

The expression for \js for negative ju can be de te r -
mined by replacing * by -x in (2) and making use 
of the symmetry conditions 

\K-x,n) =\l/(x,-n); p(-y) = p(y): (4) 

\p{.x,-\x) 

b-x y-x 

= e 11 Mb,-ix) + ^ f x
b p(y)e ^ dy, fx > 0 . ( 5 ) 

The proposed singular integral equation for 
ju) is now obtained by using (3) to eliminate 

p(y)irom (2). Substitution of (3) into (2) and change 
of the order of y and v integration gives 

b+x 

ip(x,n) =e M'b,fJi) 

x-y (6) 
+ + e ^ dy, fx >0. 

The integral over y in (6) can be performed by in-
sert ing the explicit f o r m s for ij/(x,±v) f rom (2) and 
(5). Thus, fo r example, we have 

1G. J. MITSIS, "Transport Solutions to the Monoener-
getic Critical Problems," Argonne National Laboratory 
Report, ANL-6787 (November, 1963). 

2 A. LEONARD and T. W. MULLIKIN, "Solutions to the 
Criticality Problems for Spheres and Slabs," The Rand 
Corporation Memorandum, RM-3256-PR, (July, 1962). 

x - y b+y x~*y 

/
x

 \ " f1 Cx " v " ^ 
My,v)e dy = W-b9v) J e e dy (7) 

x - y y-z 
C 1 fx P fV v 

+ 2 pJ-be dyj_bdz)e dz. 

The f i r s t t e rm on the right in (7) yields 

V-jJL ' 

b+x b+x 

-e (7a) 

When we interchange the order of y and £ integra-
tions in the second t e rm, we get 

x-y y - z 

\ v f - b
e " dy£bp{z)e " dz 

x-y y-z 

= 2u d z f z e " e " dy 

v\p(-b,v)e 

b+x 
V 

b+x' 
V-

(7b) 

where we have made use of (2). Combining (7a) 
and (7b), we find 

x - y 

JlhMy,v)e 11 dy ix^x,[x) ] 

b+x 

Similarly, 
x - y 

f_bMy,-v)e 11 dy ^^IviKx,-") + ^{x,fx)] 

b+x 

JL_ 
v+\x e [v\p{b,v) + ii\K-b,ix)]. (9) 

Both v and jjt lie in the interval [0,l] . Observe that 
the right side of (8) is not singular, since both 
numerator and denominator vanish at ju = v. The 
integration of each t e r m separately is a Cauchy 
principal value and will be denoted by putting P in 
front of the integral. 

Substituting (8) and (9) into (6) and collecting 
s imi la r t e r m s with the aid of the symmetry condi-
tion of (4), we finally a r r ive at the singular inte-
gra l equation 
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and 

dv = 

b+x 

e 

where 

x ( f i M - M ) - PL, 
i ( | 

v-\x 
dv ; jx >0,(10) 

MM) = | [ A + (M ) +A"(ji)] = l - C M t a n r V , (10a) 

and A^ju) a re the boundary values of the function 

A (z) —=l-cz tan h'1 \ ( l l ) N 2 J - i z-v z 

as it approaches the cut [-1,1] f rom above and be-
low the rea l axis, respectively. 

If the boundary condition requires that the in-
coming distribution is zero: 

iK-6,|x> °) = * ( M < 0 ) = 0 , (12) 
Equation (10) reduced to 

\(nMx,n) - P f _ ; 

-x/n 

V-JJL 
dv 

-e j{b,IJI); ix> 0, 

where we have defined 

/ ( M = 

, ( 1 ) ^ 6 , 1 / ) 

V+LU 
dv . 

(13) 

(14) 

The singular equation for ju<0) also follows 
f rom the foregoing resul ts by symmetry. 

Now consider 

*(*>*) = 2 Z d y ; M * ) > 0 > ( 1 5 ) 

which is recognized as the extension of (2), subject 
to (12), to the right half of the complex plane. The 
analysis leading to (10) gives, in this case, 

A i z ) H x , z ) = l l ^ - ^ z e'x/zf(b,z). (16) 

fl dv = ex/v°f{b,±v 0). 
J-1 VT V0 

Setting AT = b in (13) and (17), we get 

(17) 

ri ( fW(M 
eb/"f(b,ix),( 18) 

/ ( M o ) =f(b,-v o), (19) 

respectively. These last two equations for the 
emerging distribution correspond, apart f rom no-
tation, to the resul ts derived, in a somewhat dif-
ferent way, by Leonard and Mullikin2. 

The advantage of this t ransformation a r i s e s 
f rom the fact that a general method for treating 
singular integral equations is available3 . Conse-
quently, (10) is a simpler starting point than the 
original t ransport equation (1). Moreover, this 
transformation provides a different way of treating 
transport problems in this geometry f rom the 
method of singular expansion modes developed by 
Case4. What is more important, the success of 
this method in plane geometry serves as the pr ime 
motivation for investigating the t ransform p roper -
ties of the integral equations in spherical and 
cylindrical geometries where the eigenfunction 
expansions become intractable1 . The application 
of this approach to the one-dimensional cri t ical 
problem, as well as a comparison with the resul ts 
obtained previously by means of Case ' s formula-
tion5, is given in Reference 1. 

George J . Mitsis 

Since the left side of (16) vanishes at the roots 
± v0 of A(2) = 0, the right side must also vanish at 
these two points. Hence we have the two conditions 

Argonne National Laboratory 
Argonne, Illinois 

Received December 19, 1963 

3N. I. MUSKHE LISHVILI, Singular Integral Equations, 
Noordhoff, Groningen, Holland (1953). 

4K. M. CASE, Ann. Phys., 9, 1 (1960). 
5G. J. MITSIS, Nucl. Sci. Eng., 17, 55 (1963). 

Effective Surface in Lattices in the 
Calculation of Resonance Integrals 

The exact and approximate method for the cal-
culation of the Dancoff Factor (C) has been ex-
amined by many people1"3. However, little atten-
tion has yet been paid to the relation between the 
effective surface (Seff) and the Dancoff Factor . 

Recently, Levine4 '5 obtained a new relation 
empirically f rom a Monte Carlo study and has d is -
cussed it in t e rms of the Bell approximation for 
the collision prooability. His expression is 
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