Letter to the Editor

On Comparison of Synthetic Kernel Transport Results

In the recent article by Henryson and Selengut¹ a "synthetic kernel" transport approximation is compared with P_1 and D_{16} results for a fixed source problem representing the fast group of a four-group PWR cell. The authors mention that they would also like to compare their results with an SP_3 approximation, but that an SP_3 solution for this problem could not be converged on the computer code they were using, ORNL'S EXTERMINATOR.² This problem was originally formulated by I. Itkin of the Bettis Atomic Power Laboratory, and has received much study here. We can contribute the appropriate SP_3 results (see Table I, an extension of Table XII in Ref. 1).

These results were obtained with PDQ-7,³ a program which has not exhibited difficulty in converging SP₃ solu-

TABLE I

Summary of PWR Test Problems Results Percent Error with Respect to D_{16}

Quantity/Method	D 16	<i>P</i> 1	Synthetic Kernel	SP3
G_{I} G_{II} G_{III} G_{V} G_{V} $G_{Blanket}$ $G_{Blanket}/G_{Seed}$ $Peak flux in seed$	0.17398 0.14977 0.17419 0.25984 0.24222 0.49794 1.9163 0.08903	+4.4 +1.0 +4.1 -9.9 +3.9 +3.9 +3.3 +14.7 -11.6	$ \begin{array}{r} +2.3 \\ -0.5 \\ +2.1 \\ -6.0 \\ +3.6 \\ +1.4 \\ +7.9 \\ -7.0 \\ \end{array} $	+0.78 -0.77 +0.64 -2.59 +2.23 +0.27 +2.93 -3.42

tions. We feel the convergence problem is with the application of EXTERMINATOR and not with the SP_3 approximation itself.

M. Natelson

Westinghouse Electric Corporation Bettis Atomic Power Laboratory P. O. Box 79 West Mifflin, Pennsylvania 15122

¹H. HENRYSON and D. S. SELENGUT, Nucl. Sci. Eng., 37, 1

^{(1968).} ²T. B. FOWLER, M. L. TOBIAS, and D. R. VONDY, ²T. B. FOWLER, M. L. TOBIAS, and D. R. VONDY, sion Equations in One and Two Dimensions," ORNL-TM-842, Oak Ridge National Laboratory (1961).

W. R. CADWELL, "PDQ-7 Reference Manual," WAPD-TM-678, Bettis Atomic Power Laboratory (1967).