574 **MOORE**

$$
N(t) = N_0(1 + N'(t))
$$

where N_0 is the expectation of $N(t)$ and $N'(t)$ is a **random function of expectation zero. Then, using Eqs. (A.2) and (A.4), we have**

$$
\rho_N(\tau') = N_0^2 + \rho_{N'}(\tau') ,
$$

and

$$
\rho_{N,\psi}(\tau',\vec{q}) = N_0 \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} dt (1 + N'(t)) \times \times \psi(\vec{q}, t + \tau')
$$

This may be separated into the sum of two integrals, the first of which vanishes because of the periodicity of ψ and the second of which vanishes **because of the lack of correlation between** *Nf* **and** ψ . Similar arguments can be made for $\rho_{\psi,N}(\tau', \vec{q})$ **whence, from Eq. (A.3),**

$$
\rho_{\psi'}(\vec{q}, \tau') = \rho_{N'}(\tau') + N_0^2 + \rho_{\psi}(\tau', \vec{q}) \quad . \tag{A.5}
$$

Invoking the Wiener-Khintchin theorem at \vec{q} , we **Fourier transform Eq. (A.5) on the variable** τ **[']** and **produce thereby the power spectral density of** ψ **^{***r***}, viz**

$$
\left|\underline{\psi}'(\vec{q},\,\nu)\right|^2 = N_0^2 \,\delta(\nu) + \left|S_N(i\nu)\right|^2 + \left|S_\psi(\vec{q},\,i\nu)\right|^2,\tag{A.6}
$$

 $\left[c \quad t \in \mathbb{R} \right]^{2}$ where $\log(\nu)$ is the power spectral density function of the background noise and ν is the **transform parameter having dimensions of fre**quency. It remains to calculate $|S_{\psi}|^2$.

Since $\psi(\vec{q}, t)$ is periodic of period τ , it can be **represented by a Fourier series of the form**

$$
\psi(\vec{q},t) = \sum_{n} \alpha_n(\vec{q}) \exp(2\pi i n t/\tau) \quad . \tag{A.7}
$$

Substitution of Eq. (A.7) in Eq. (A.2) gives

$$
\rho_{\psi}(\vec{q}, \tau') = \sum_{n,m} \alpha_n \alpha_m^* \exp(-2\pi i m \tau'/\tau) \times
$$

$$
\times \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} dt \exp[2\pi i (n-m)t/\tau]
$$

=
$$
\sum_{n} |\alpha_n|^2 \exp[-2\pi i n \tau'/\tau] . \quad (A.8)
$$

The spectral density function of ψ , $|S_{\psi}|^2$, is obtained by Fourier transformation on τ' , whence

$$
|S_{\psi}(\vec{q}, i\nu)|^2 = \int_{-\infty}^{\infty} d\tau' \exp(2\pi i \nu \tau') \rho_{\psi}(\vec{q}, \tau')
$$

$$
= \sum_{n} |\alpha_n|^2 \delta(\nu - n/\tau) , \qquad (A.9)
$$

and substitution in Eq. (A.6) yields

$$
|\psi'(\vec{q}, v)|^2 = |S_N(iv)|^2 + N_0^2 \delta(v) +
$$

+ $\sum_n |\alpha_n|^2 \delta(v - n/\tau)$ (A.10)

We see that the ψ' power spectrum is a super**position of a continuous spectrum and a line spectrum. The continuous spectrum, arising from background noise, is to first approximation 'white' or independent of** *v.* **The line spectrum, arising** from the signal, has line intensity $|a_n|^2$. Thus, at **frequency** $\nu_0 = n_0 / \tau$, $|S_N(i\nu_0)|^2 \approx |S_N(i\nu_{0\pm\epsilon})|^2 =$ $\psi'(\hat{q}, \nu_{\text{o}+ \epsilon})^2$. It is thus possible to correct the **observed spectrum function to yield the noise-free spatially dependent intensity.**

$$
t) = \sum \alpha_n(\vec{q}) \exp (2 \pi i n t / \tau) \quad . \quad (A.7) \quad |\psi'(\vec{q}, \nu)|^2 - |\psi'(\vec{q}, \nu_{0\pm\epsilon})|^2 = |a_{n_0}|^2 \delta (\nu - \frac{n_0}{\tau}) \quad .
$$

Addendum

The authors of "Wear Rates in Automotive Engines by Liquid Scintillation Counting of Fe55" *(Nuclear Science and Engineering***, 20, 521-526 (1964)) would like to acknowledge the Special Training Division of the Oak Ridge Institute of Nuclear Studies, in whose facilities the actual wear studies were conducted.** *We* **would certainly like to thank the staff of the Division for making these facilities available for our use.**

> *H. H. Ross R. P. Gardner J. W. Dunn*