
Letters to the Editor 

On the Behavior of Circulation Ratio 
and Algebraic Slip 

In calculations of flow distribution within steam generators, 
an increase of circulation ratio with increasing algebraic slip has 
been reported. For example, in Ref. 1 a homogeneous calcu
lation at full power produced a circulation ratio of 3.38, while 
a calculation for the same conditions employing an algebraic 
slip model using parameters developed by Lellouche and 
Zolotar2 yielded a value of 3.63. Since the inclusion of inter
phase slip would allow the vapor phase to travel upward faster 
than the liquid, slip would intuitively be expected to reduce 
rather than raise the circulation ratio. 

Though this expectation is generally correct, conditions exist 
for which the reverse is true, as will be shown in this Letter. 
This may be seen by considering a simple model of the upward 
flow through the evaporator of a recirculating steam genera
tor. This flow is driven by the effective density difference 
between the liquid in the downcomer and the average mixture 
in the evaporator. Hence, 

where 

Km 2 

(p,- p)gH = --
2pA2 

(1) 

K = equivalent loss factor for the total evaporator flow m 
p = average density of the mixture. 

Since an increase in j5 with slip tends to decrease both the driv
ing head on the left side of Eq. (1) and the dynamic pressure 
loss on the right side, the behavior described below is a conse
quence of the relative importance of these two opposing effects. 
This equation may be rearranged to become 

c(pp,- p2)1/2 = m , (2) 

where c is a constant which lumps together all the constants of 
Eq. (1). 

Since the circulation ratio, CR, is defined as the ratio of the 
total evaporator flow to the steam flow and the steam flow 
equals the feedwater flow in steady state (neglecting small carry
over and carryunder), Eq. (2) may be rewritten as 

c(pp,- -p2)112 = CR 

mf 
where mf is the feedwater flow rate. 

(3) 

Differentiating this with respect to p, the only variable for 
a given set of operating conditions, we obtain 

d(CR) ~ (p1 - 2p) 
d-p mf 2(-pp,- -p2)112 . 

(4) 
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Thus, if p1 is greater than twice the average density of the 
flow, CR will increase with increasing p. Since p increases with 
slip, CR will also increase with slip under the same circum
stance. However, the increase of p with slip will eventually 
cause the right side of Eq. (4) to become negative. Beyond that 
point, additional slip will reduce the circulation ratio. This 
result is illustrated in Fig. 1 (from Ref. 3), where the circula
tion ratio calculated by a development version of the ATHOS 
code is plotted as a function of assumed slip velocity. Note the 
denominator of Eq. (4) must be real for any circulating flow. 

By way of illustration, consider the behavior of p1 - 2p at 
1000 psia for a variety of slip ratios and an assumed circula
tion ratio of 3.5. The average flow quality was assumed to be 
half the exit flow quality, i.e., ~ xfs = 0.143. The variation of 
Pt - 2p with slip ratio is shown in Table I. 
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Fig. I. Circulation ratio as a function of assumed slip velocity. 

TABLE I 

Variation of p1 - 2p with Slip Ratio 

Slip Ratio 

1.0 1.5 2.0 3.0 4.0 5.0 

p,-2p 22 15.1 9.44 0.79 -5.5 -10.4 
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For an average slip ratio <3.109, p1 - 2p is positive, so 
increasing slip increases the circulation ratio. Since the condi
tions assumed here are similar to those from Ref. 1 cited above, 
the behavior reported there is physically reasonable. 
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Richardson Extrapolation 

The only aim of the present Letter is to draw the readers' 
attention to an old method 1 for increasing the accuracy of 
numerical solutions of linear problems. Customarily, new finite 
element (FE) or coarse-mesh (CM) algorithms are checked on 
well-defined benchmark problems, 2 and the reference solution 
of a given benchmark problem is usually obtained by a well
established program using a large number of meshes. 

We are concerned here with the Richardson extrapolation, 3 

which allows one to obtain higher accuracy without refining 
further the mesh. The method can be used independently of the 
geometry. 

It is well known that the accuracy of a numerical solution 
is often proportional to some power of the mesh size h. The 
accuracy of the finite difference (FD) method is O(h), that of 
the linear FE method is O(h 2

). The basic idea in Richardson 
extrapolation is to separate a part of the error, proportional to 
some power of h, and to eliminate it. Let us consider the prob
lem to be solved as 

Lu =! in n , 
Bu =g on an , 

(Ia) 

(lb) 

where an is the boundary of the region n. In numerical methods 
Eq. (1) is substituted by the discretized formulas 

Lhuh = fh in nh 

Bhuh = gh on anh 

(2a) 

(2b) 

In the discretized formulas the dependence on the mesh size h 
is indicated explicitly. The discretized form of the most fre-

quently used operators is available in handbooks (see Ref. 4). 
Let us assume Eq. (2) to have a unique solution that is suffi
ciently smooth. 3 The solution of Eq. (2) then has the follow
ing form: 

TABLE I 

Richardson Extrapolation of BUG-180 Results, Using 
3 and 12 Points per Hexagon, Problem GA9A1 

Number B3a B12a REb B48a 

1 0.3798 0.3755 0.3741 0.3745 
2 0.9988 1.0497 1.0667 1.0655 
3 0.7781 0.8207 0.8349 0.8338 
4 0.1891 1.2247 1.2366 1.2349 
5 1.2358 1.2777 1.2917 1.2902 

6 1.2183 1.2662 1.2821 1.2806 
7 1.2450 1.2906 1.3058 1.3043 
8 1.1999 1.2404 1.2539 1.2522 
9 1.2147 1.2470 1.2578 1.2562 

10 0. 7442 0.7638 0.7703 0.7695 

11 1.1766 1.1692 1.1667 1.1665 
12 1.1328 1.1431 1.1465 1.1455 
13 1.1938 1.2149 1.2219 1.2207 
14 1.1565 1.1761 1.1826 1.1812 
15 1.1522 1.1551 1.1561 1.1552 

16 1.1802 1.1699 1.1665 1.1663 
17 0.3494 0.3374 0.3334 0.3339 
18 0.8565 0.8673 0.8709 0.8703 
19 0.9093 0.9284 0.9348 0.9338 
20 0.9547 0.9879 0.9990 0.9977 

21 '0.9665 1.0048 1.0176 1.0162 
22 0.9419 0.9702 0.9796 0.9785 
23 0.8859 0.9007 0.9056 0.9048 
24 0.7534 0.7280 0.7195 0.7206 
25 1.0347 0.9833 0.9662 0.9688 

26 1.1301 1.1012 1.0916 1.0928 
27 1.1038 1.0702 1.0590 1.0605 
28 0.9614 0.9063 0.8879 0.8907 
29 0.6444 0.6412 0.6401 0.6404 
30 0.9144 0.8673 0.8576 0.8541 

31 0.9867 0.9557 0.9454 0.9467 
32 1.0122 1.0052 1.0029 1.0028 
33 1.0913 1.0852 1.0832 1.0830 
34 1.1010 1.0745 1.0657 1.0668 
35 0.9778 0.9306 0.9149 0.9174 

36 0.6438 0.6409 0.6399 0.6402 
37 0.9128 0.8654 0.8496 0.8520 
38 1.0073 0.9696 0.9570 0.9587 
39 1.1131 1.0972 1.0919 1.0921 
40 1.0477 1.0454 1.0446 1.0441 

41 1.0215 1.0056 1.0003 1.0008 
42 0.9655 0.9256 0.9123 0.9141 

Timec 1.92 13.27 15.19 160.9 

aBn: BUG-180 result using n points per hexagon. 
bRE: Richard~0n extrapolation. 
cUNIV AC 1108 CPU min. 




