
Letters to the Editor 

On the Discrete Ordinates Method 
in Spherical Geometry 

Reed and Lathrop1 have made some suggestions for 
improving the solution of the transport equation in curved 
geometries by the discrete ordinates method. The suggestions 
are based on better representation of derivative terms. In the 
case of one-dimensional spherical geometry, the point 
(ri+1/2»Mm) at which the flux is evaluated is not necessarily the 
center of the phase-space cell. The particular choice of ri+1/2 
has been shown to reduce the truncation error of order A r 2 / r 2 

to order A r 2 / r . This choice also removes the spurious flux dip 
at the center of a sphere. The choice of fim is also shown to be 
arbitrary as far as derivative terms are considered. This freedom 
is then used to choose some specific values of ixm that can inte-
grate quadratic polynomials correctly and thus satisfy the "dif-
fusion condition." Such values of (xm are shown to be away 
from the center of the angular cell by an amount of order A/A2. 
Further, it has been shown that the truncation error with such 
a choice of fxm is of order A/z2, which is the same even when 

is chosen as a center. 
Note that if certain requirements based on "neutron con-

servation" are used, the choice of jum is not arbitrary when one 
considers regions close to the center of a sphere. We find that 
it is preferable to use /xm as the center of the angular cell. The 
requirement, in the words of Bell and Glasstone,2 is "The dif-
ference equation for a fundamental (r, p) cell should obey an 
explicit conservation law for neutron economy in that cell; each 
term in the equation should clearly represent a physical com-
ponent in the neutron conservation, such as absorption or flow 
across a face." It is because of this requirement that the differ-
ence equation is derived from the "conservation form" of the 
transport equation so that the first term on the left side of Eq. 
(1) (given below) stands for net flow through physical faces and 
the second term stands for net flow through direction cell edges. 

The difference equation is given by 
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For the sake of simplicity and definiteness, let us consider 
the mesh closest to the center. Let / = 0 and / = 1 denote the 
center and edge, respectively, of this first mesh. Then A0 is 
zero; therefore, the first term on the left side of Eq. (1) reduces 
to 

E=[timAlNl(nm))/Vw2 (2) 

This term is expected to represent the flow of neutrons 
between /*m+i/2 and Mm-1/2 across the face of area Au accord-
ing to the requirement stated above. Such a flow of neutrons 
can be rigorously expressed as 
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We compare E and EEXACT 

following. 

Case 1. fXm fimean — 

for the two choices of /xm in the 

Mm + 1/2 + Mm-1/2 

In this case it is easily seen that the leading term AE in 
( E - E e x a c t ) is given by 
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From the transport equation 
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it is obvious that dN/dp tends to zero as fast as r tends to zero 
for physical problems. We note that for the first mesh under 
consideration, Ax/Vx/1 is of the order of (1/Ar) and r = Ar. 
Therefore AE is of order Aju2. 

Case 2: \im = \imean + 0(A/*2) . 

This is the choice suggested by Reed and Lathrop,1 and it 
is seen that the leading term AE is 
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This difference AE is certainly large as compared to that in 
case 1 because r is small. Hence, it looks appropriate to use cen-
trally placed \im in a few meshes close to the center. Near the 
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center, the angular flux tends to be isotropic, and it may not be 
necessary to choose /zm as in case 2 in order to integrate quad-
ratic polynomials exactly. 

Thus the choice of \km — fjtmean leads to a better representa-
tion of the neutron flow across the physical faces than the 
choice in case 2 near the center. Of course, the net flow across 
the faces of the phase-space cell, which is the sum of the first 
two terms on the left side of Eq. (1), may not be affected by the 
choice of j\im in case 2. This can be easily seen in the light of 
the following relation: 

<*m + l/2 ~ OLm-\/2 = . (7) 
Nevertheless, the choice of /xw, as in case 2, may lead to 

some incorrect redistribution of neutrons in angular and space 
variables. When regions away from the center are considered, 
the choice of iim is not so crucial. In that case, AE is obtained 
by replacing Ax by (Ai+l — A,-) in Eqs. (4) and (6). As 
(Aj+x - Ai)/Vi+W2 is of order (1 /r) and dN/dfi need not tend 
to zero, it is seen for both cases that AE is of order (A i i2 /r), 
which is small for large r. 
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On Efficient Estimation of Variances 

In Ref. 1 Dubi addresses the problem of the optimum esti-
mation of variance from a given number of realizations of a 
random variable. The question is posed in the following way. 
Let x\, x2,..., x„ be independent realizations of the random 
variable x with an expectation and variance a2 . Let the real-
izations be divided into groups ("batches") containing k real-
izations each and let 
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where angle brackets stand for expectation. 
In most practical cases, however, the expectation of the ran-

dom variable is not known and therefore cannot be used in the 
estimation of the variance. In this letter we show that k = 1 is 

optimal also if the expectation is to be estimated, and this esti-
mate is used in the estimate of the variance. It will also be 
shown that the variance of the entirely empirical estimate of the 
variance is higher than that in Eq. (2). 

Let 
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where St is the batchwise average in Eq. (1) and p = n/k, the 
number of batches formed from the n realizations. Obviously, 
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i.e., S is an unbiased estimate of the mean. Let 
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i.e., Vj represents a realization of a random variable that has 
the expectation a2 . The sample average formed from these 
realizations is 
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which is obviously also unbiased with respect to o2. The ques-
tion again is how to choose the value p (or equivalently the 
value of k = n/p) in order to minimize the variance of the esti-
mate v in Eq. (5). The question is answered by calculating the 
variance in question. The variance of the estimate is 
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The optimum value of k = n/p with n given is the one that 
minimizes the quantity 
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In order to make the derivations simpler, we introduce random 
variables with zero expectations. Thus, let 

y = x-fx , yi = Xi-ii , Zi = Si-n . 
Then 

(8) 

If the variance of x is estimated in terms of the batchwise aver-
ages Si9 what is the value of k that minimizes the variance of 
the estimated variance? In other words, what is the optimum 
batch size that gives the most reliable estimate of the variance? 
Dubi proves that if the expectation n of x is known, the opti-
mum value of k is 7, i.e. the "one-particle" estimation of the 
variance is the most reliable. He also shows that in the optimum 
case, the variance of the estimate is 

(Zi) = (ZiZJZrZs)=0 , (i±j,r,s) , 
since the realizations xt are assumed to be independent and 
therefore so are the sample averages Z,. Now, in view of Eqs. 
(1) and (3), the quantity in Eq. (7) reads 
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Explicit calculation of the square in brackets yields 
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