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Letters to the Editor 

The Decay Constant of a Neutron Pulse* 

There has been considerable interest, recently (1"3), in 
the question of time decay constants in small, crystalline 
systems. Specifically, one is puzzled by the unequivocal 
observation of ''fundamental" decay constants which tran-
scend the critical value A* = (^2)min. In a recent note, one 
of us (N. C.) averred that the phenomenon could surely be 
understood through a study of the continuum contribution in 
the eigenfunction expansion of the pulse, n(v,t). We wish to 
report, here, the results of an exact calculation, which 
bear out this point of view. 

We have computed the time-dependent activation of a 1/v 
detector located in the moderating sample. The simplified 
Boltzmann equation which we use has the following fea-
tures: 

a) leakage is described by diffusion theory, throughout, 

b) scattering is described by a kernel composed of an 
elastic, isotropic part and an inelastic, isotropic 
part written as a one-term degenerate kernel. Thus, 

Zs(v',v)= T,e(v)6(v'-v) + pZi(v')vi:i(v)M(v}, (1) 
with 

/3"1 = f°° dv vZi(v)M(v). (2) Jo 
Ze and Zt- are displayed in Fig. 1. 

The model, while schematic in nature, has been designed 
to include the important physical features of the problem. 
The diffusion term, while not quite correct in small 
systems, does provide a loss mechanism that varies 
inversely with surface area, and the scattering kernel does 
exhibit a Bragg cut-off. The calculation of n(v, t) becomes 
a problem of relatively simple quadrature, and the behavior 
of AQ as a function of B2, which is of primary interest, has 
perhaps semi-quantitative validity. 

Straightforward calculation, in the manner sketched in 
Ref. (4), permits us to express the detector response as 

N(t) = N0 exp(-XQt) + f " dX exp(-)U)Mx). 

*This work was performed under the auspices of the USAEC. 
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Fig. 1. Cross sections for elastic and inelastic scattering. 
x2 = E/kT. 

which are shown by the broken curves in Fig. 2. The peaks 
owe their existence to the singular behavior of cross 
sections at the Bragg energy. 

When B2 > B2
cr, the first term in (3) is absent and (NX) 

contains first two peaks, then, only one. The first peak is 
extremely tall and narrow [(AA/A) ~ (1/75)] and depends 
upon B2 in a manner that suggests it be considered the 
the natural continuation of A0(B2). It is so displayed in Fig. 
2. The strong peak dominates the decay for a considerable 
interval, but eventually gives way to the "slower" portions 
of the continuum contribution. In our model, for example, 

(3) 

When 0 < B2 < B2
cr, N(A) is an irregular function of A. It 

has two maxima, at values of A which depend upon B2, and 

N(t) * exp(-Apt) + 0.12 exp(-A*f) 
(A**) 

3/2 
A * * > 1 (4) 

when B2 = 1.2 B2
cr, Xp = 1.2 A*. Here, one would have to 

wait until X*t 30 before the asymptotic, non-exponential 
decay became significant. The waiting-time" in this case 
is ~ 10 msec. 

The peak, Xp, may be characterized mathematically in 
the following way5. The critical equation for A0 may be 

A related approach has been used in the kinetic theory of gases 
by L. Sirovich and J. Thurber. See, for example, Proc. Third Intern. 
Symp. Rarefied Gas Dynamics, 1962, Vol. I, Acad. Press Inc., New 
York (1963). 
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Fig. 2. A {B ). When A < A*, A is the discrete decay constant, 
A0. When A > A*, A is A^oftext. 

written as /3B(x) = 1. (Ref. 4). It has a unique solution, XQ, 
when B

2

 < B
2

cr
. We may obtain a solution when B

2

 > B
2

cr
 if 

we regard B( A) as one branch of a multiple-valued function, 
B(A). Then, when B

2

 > B
2

cr
, the solution will no longer be 

found on the principal branch. In our model, A0 becomes (at 
least) a complex pair of solutions, one located on the 
branch of B(x) which lies immediately "above" the princi-
pal branch, the other on the branch immediately "below". 
The contributions from the poles may be extracted by con-
tour deformation, and the response may always be written 

as the sum of "discrete" and "continuous" portions. We 
have found that the complex pair is quite close to the 
branch cut. They are responsible for the strong peak in 
N(X) when the representation of Eq. (3) is used. We have 
also noted that when Se is set equal to zero the peak, Xp, in 
N(X) disappears. In that case,no solutions to (3B(x) = 1 have 
yet been found on neighboring branches. 

Before concluding, one might ask whether Xp (B2) resem-
bles the function obtained through the cut-off procedure 
recently suggested by Kothari2. We have interpreted the 
suggestion to mean that we should replace f$B(x) = 1 by 
j3B'(X) = 1, where Bf is computed by integrating over a 
restricted range of energies. Then, we find that the cut-
off produces a discrete A0 which differs from Xp by less 
than 5% in the range A* < X < 2A*. The function XK (B2), 
which appears in the cut-off theory as the asymptote of A0, 
also appears in our analysis. We find that, for sufficiently 
large B2, Xp becomes (vZ{ + vDBz)v+. This asymptotic 
portion appears in Fig. 2 as the final, Linear segment of 
X(B2). 

The results we have described indicate how "decay 
constants" might be observed over an unexpectedly large 
range of bucklings in crystalline moderators. We hope to 
publish the details of our work, and its obvious extensions, 
before long. 
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