Letters to the Editor

A Short Table of Indefinite Integrals of the Exponential Integral Function

Problems in radiative transfer frequently result in integrals involving the exponential integral functions defined by

$$
E_{n}(x)=\int_{1}^{\infty} \exp (-x t) t^{-n} d t
$$

However, indefinite integrals involving these functions are seldom included in the standard collections. At various times I have worked out a number of these integrals and believe that this short table will be useful to readers of Nuclear Science and Engineering. One or two of the obvious general forms are included for utility.

TABLE I

Indefinite Integrals Involving E_{1} and E_{2}

1. $\int \frac{E_{1}(r)}{r^{3}} d r=\frac{E_{3}(r)-E_{1}(r)}{2 r^{2}}$
2. $\int \frac{E_{1}(r) e^{-r}}{r^{2}} d r=\frac{1}{2} E_{1}^{2}(r)+\frac{E_{2}(2 r)-E_{1}(r) e^{-r}}{r}$
3. $\int \frac{E_{1}(r) e^{-r}}{r} d r=-\frac{1}{2} E_{1}^{2}(r)$
4. $\int \frac{E_{1}(r) e^{-r}}{r^{3}} d r=\frac{E_{3}(2 r)-E_{1}(r) e^{-r}}{2 r^{2}}-\frac{E_{2}(2 r)-E_{1}(r) e^{-r}}{2 r}-\frac{1}{4} E_{1}^{2}(r)$
5. $\int \frac{E_{2}(r)}{r} d r=E_{2}(r)-E_{1}(r)$
6. $\int \frac{E_{2}(r) e^{-r}}{r^{2}} d r=-\frac{E_{1}(r) E_{2}(r)}{r}-\frac{E_{2}(2 r)-E_{1}(r) e^{-r}}{r}-\frac{1}{2} E_{1}^{2}(r)$
7. $\int \frac{E_{1}(r) E_{2}(r)}{r} d r=E_{1}^{2}(r)+\frac{E_{2}(2 r)+E_{1}(r) E_{2}(r)-E_{1}(r) e^{-r}-E_{2}^{2}(r)}{r}$
8. $\int \frac{E_{2}(r) e^{-r}}{r} d r=E_{1}^{2}(r)+\frac{E_{2}(2 r)+E_{1}(r) E_{2}(r)-\left[E_{1}(r)+E_{2}(r)\right] e^{-r}}{r}$
9. $\int \frac{E_{2}^{2}(r)}{r^{2}} d r=-E_{1}^{2}(r)-2 \frac{E_{2}(2 r)+E_{1}(r) E_{2}(r)-E_{1}(r) e^{-r}}{r}+\frac{E_{2}^{2}(r)}{r}$
10. $\int E_{1}^{2}(r) d r=-\frac{E_{2}(2 r)-\left[E_{1}(r)+E_{2}(r)\right] e^{-r}+E_{1}(r) E_{2}(r)}{r}-E_{1}^{2}(r)-E_{1}(r) E_{2}(r)$
11. $\int r E_{1}(r) d r=\frac{1}{2} r^{2} E_{1}(r)-\frac{1}{2}(r-1) e^{-r}$
12. $\int e^{-r} E_{1}(r) d r=E_{1}(2 r)-E_{1}(r) e^{-r}$
(Continued)

TABLE I (Continued)
13. $\int r e^{-r} E_{1}(r) d r=r E_{1}(2 r)-r E_{1}(r) e^{-r}-E_{1}(r) e^{-r}+E_{1}(2 r)+\frac{1}{2} E_{2}(2 r)$
14. $\int r E_{1}^{2}(r) d r=\frac{1}{2}\left[r^{2} E_{1}^{2}(r)-2 E_{1}(r) e^{-r}+\frac{1}{2} e^{-2 r}+2 E_{1}(2 r)+r E_{1}(2 r)+\frac{1}{2} E_{2}(2 r)\right]$
15. $\int E_{2}^{2}(r) d r=\frac{1}{3}\left\{r E_{2}^{2}(r)-2 r E_{1}(r) E_{2}(r)+2 r E_{1}(r) e^{-r}-2 r E_{2}(2 r)+2 E_{1}(r) e^{-r}+\frac{1}{2} \exp (-2 r)\right.$

$$
\left.+(r+6) E_{1}(2 r)+\frac{1}{2} E_{2}(2 r)-2 E_{2}^{2}(r)-2 E_{3}(2 r)\right\}
$$

16. $\int r^{n} E_{1}(r) d r=\frac{1}{n+1}\left\{r^{n+1} E_{1}(r)+\int r^{n} e^{-r} d r\right\} \quad n=1,2,3, \ldots$
17. $\int r^{n} E_{2}(r) d r=\frac{1}{n+1} r^{n+1} E_{2}(r)+\frac{1}{(n+1)(n+2)}\left\{r^{n+2} E_{1}(r)+\int r^{n+1} e^{-r} d r\right\} \quad n=1,2,3, \ldots$
18. $\int \frac{E_{1}(r)}{r^{n}} d r=\frac{1}{(n-1)} r^{-(n-1)}\left\{E_{n}(r)-E_{1}(r)\right\} \quad n=2,3,4, \ldots$
19. $\int \frac{E_{2}(r)}{r} d r=E_{2}(r)-E_{1}(r)$
20. $\int \frac{E_{2}(r)}{r^{n}} d r=\frac{1}{n-1} r^{-(n-2)}\left\{\frac{E_{n}(r)-E_{1}(r)}{n-2}-r E_{2}(r)\right\} \quad n=3,4,5, \ldots$

Norman G. Gunther
Space Power, Inc.
1977 Concourse Drive
San Jose, California 95131-1708
June 18, 1986

On the Derivation of the Equations of the Point-Reactor Model

Many authors have derived the equations for the timedependent behavior (or kinetics) of a point reactor from diffusion and transport theory; see, for example, Refs. 1 and 2. The only aim of this letter is to present a technique of variables separation to obtain the equations of formulation of the pointreactor model from diffusion theory.

In diffusion theory, the system of equations used is (see, for example, Ref. 1)

$$
\begin{equation*}
\frac{\partial N}{\partial t}=D v \nabla^{2} N-\Sigma_{a} v N+(1-\beta) k_{\infty} \Sigma_{a} v N+\Sigma_{i} \lambda_{i} C_{i}+S_{0} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial C_{i}}{\partial t}=\beta_{i} k_{\infty} \Sigma_{a} v N-\lambda_{i} C_{i} \tag{2}
\end{equation*}
$$

where
$N(\vec{r}, t)=$ neutron number density
$D, v, \Sigma_{a}=$ diffusion constant, neutron speed, and macroscopic neutron absorption cross section, respectively

$$
\beta=\Sigma_{i} \beta_{i},
$$

where

$$
\begin{aligned}
\beta_{i}= & \text { delayed neutron for the } i \text { 'th emitter } \\
k_{\infty}= & \text { infinite-medium reproduction factor } \\
\lambda_{i}, C_{i}(\vec{r}, t)= & \text { decay constant and density of the } i \text { 'th type of } \\
& \text { precursor, respectively }
\end{aligned}
$$

$S_{0}(\vec{r}, t)=$ extraneous neutron source.
All coefficients $D, v, \Sigma_{a}, k_{\infty}, \beta, \beta_{i}$, and λ_{i} are constant.
We assume that

$$
\begin{align*}
N(\vec{r}, t) & =g(\vec{r})+n(t) f(\vec{r}), \tag{3}\\
C_{i}(\vec{r}, t) & =p_{i}(\vec{r})+c_{i}(t) f(\vec{r}), \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
S_{0}(\vec{r}, t)=q(t) f(\vec{r}) \tag{5}
\end{equation*}
$$

Substituting Eqs. (3), (4), and (5) into Eqs. (1) and (2) yields

$$
\begin{align*}
\frac{d n}{d t} & +\Sigma_{a} v n-(1-\beta) k_{\infty} \Sigma_{a} v n-D v n \frac{\nabla^{2} f}{f}-\Sigma_{i} \lambda_{i} c_{i}-q \\
& =D v \frac{\nabla^{2} g}{f}-\frac{\Sigma_{a} v g}{f}+\frac{(1-\beta) k_{\infty} \Sigma_{a} v g}{f}+\frac{\Sigma_{i} \lambda_{i} p_{i}}{f} \tag{6}
\end{align*}
$$

