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The average value of the neutron scattering cross section 
of beryllium is about 0.84 cm"1, whereas the values of 
do not exceed 0.93 X 10~2 cm"1. (Except in one case in our 
second paper9, where we have used = 6.06 x 10~2 cm"1. 
This case was studied simply to investigate the effect of 
samarium resonances on the equilibrium spectra.) Thus, 
S s is about a hundred times larger than and we feel the 
use of diffusion theory by us was not unjustified. 

Thus, though Michael has raised an important point, in 
view of what has been said above it is difficult to agree 
with his conclusions. 
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Reply to a Note by Jeffery Lewins and a Simplified 

Development of the Maximum Principle 

In our recent publication1, the time-optimal solution to 
the xenon shutdown problem was obtained by application of 
the techniques of Pontryagin, Boltyanskii, Gamkrelidze, and 
Mishchenko2. An important consideration in formulating 
this problem was the choice of direction of the canonical 
(adjoint) vector in the xenon-iodine state space at the 
intersection of the optimal trajectory and the target curve, 
labeled Q in Ref. 1. In his note, Lewins3 incorrectly refers 
to this choice as a "supposition," whereas in Ref. 1, the 
unambiguous condition for the choice of sign of the xenon 
canonical variable p2 in reverse time is specified by the 
statement, "The initial conditions at T = 0 [i.e., the inter-
section mentioned above] are determined by choosing a 
point x (T = 0) e SI according to Eq. (15) and applying the 
additional conditions (11) and (18) . . . " (Paragraph 1, 
page 474, Ref. 1). Equation (18) is the statement of trans-
versality, and Eq. (11) prescribes the Hamiltonian, which 
is a positive constant1'2. Hence, we did not rely on the 
condition of trans versality alone as suggested by Lewins. 
The desired manipulation of these two conditions is pre-
sented by Lewins in his equation (4). The same result 
follows easily from our equations (11) and (18), and it was 
for this reason that we stated in Ref. 1, "Equations (11) and 
(18) combine to specify p(0) as an outwardly directed 
normal from Q; i.e., />2(0) > 0." (Paragraph 1, page 474 of 
Ref. 1). 

We would also like to comment on a second statement in 
Lewin's note. In the paragraph containing his equation (4), 
he states, " . . . that since the bracket (in Eq. (4)) vanishes 
for operations on the xenon boundary, the sign is then im-
material and H is zero." This statement is puzzling since 
a) the bracket in his equation (4) refers to the intersection 
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of the optimal trajectory with the target curve £2, which has 
nothing to do with the xenon boundary, defined in Ref. 1 by 
%2 ~ #2 max> and b) the corner conditions2 require that H re -
main continuous at the intersection of an optimal trajectory 
with the boundary. Hence, H cannot equal zero on the 
boundary, since it is a positive constant off the boundary. 

In the last paragraph of Lewin's note, he suggests 
changing the direction of the canonical variable and the 
optimization theorem to resolve an alledged conflict 
" . . . with our usual ideas of perturbation theory and the 
importance of a source of iodine or xenon.'' However, he 
adds that this will not affect our solution to the shutdown 
problem. Since we concur that the suggested change will 
leave the present results unaffected, we feel that there is 
no need for further comment. 

Having dealt in detail with the specific comments of 
Lewins, we now return to the initial question regarding the 
sense of the adjoint vector p . We would like to present a 
simple geometric demonstration of the Maximum Principle 
for time optimal problems to show the manner in which the 
direction of p is related to the theory. The following 
development appeals to us as an excellent heuristic argu-
ment, but it is not to be construed as a rigorous derivation 
of either the Maximum Principle or the transversality con-
dition. (We are indebted to Arthur M. Hopkin, University of 
California (Berkeley), for this model.) 

In Fig. 1, let the initial point O be the origin. The target 
line is £2. The contours ST (assumed convex) enclose all 
points in the (xi,x2) phase plane that can be attained from O 
using any allowable control scheme during the time inter-
val O ^t ^ r. In Fig. 1, we observe: 

a) the points on S^ can be reached in time 11 only by 
employing time optimal control 

b) if T is the minimum time from O to the targets, 
then ST is tangent to ft at the point where the target 
is attained. 

Fig. 1. Time-optimal trajectory from 0 to Q. System equations: 

37= f(*,u);0<t1<t2<T 
dt 

for u in the allowable control space. 
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Fig. 2. "Cone of attainability" in the augmented phase space for 
a time-optimal second-order system. 

at 

p = outward normal to the surface. 
The time-optimal trajectory lies on the surface. This is character-
ized by (/,/>) = O along the trajectory. 

We define an adjoint vector p(t) = (pi,p2) as an outward 
normal to St (magnitude as yet unspecified)4. 

We define a reduced Hamiltonian (no cost function in-
cluded) as 
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Hr = (/>,/), (1) 

where p(t) is the outward normal to St at the point where 
the optimal trajectory crosses St. 

Hr >0 t^O (2) 

t=T. (3) 

Equation (3) is the transversality condition. Note the 
direction of p(T) relative to the target. Equation (2) is not 
the Maximum Principle, since Hr is not necessarily 
constant. For this aspect, we augment the space using the 
cost function, time, as the third coordinate (Fig. 2). By the 
arguments above, all points in the interior of the cone are 
attainable. Optimal trajectories that lay on St at time t 
now lie on the surface of the cone. If J> = {po,pi,p2) is the 
outward normal to the cone, then the Hamiltonian is now 
defined by 

H={pJ), (4) 
where 

f = (l,/i,/2)=/(*,w). 

For a trajectory J,o follow the surface, i.e,, to be 
optimal, we require / tangent to the surface. This is the 
Maximum Principle: 

H = O = max (&/). (5) 
u 

The adjoint equation 

dp/dt = - dH/dx (6) 

follows by assuming u fixed and setting dH/dt = O. Exten-
sion to other cost functions and higher dimensions is 
possible. 
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