Virtual Limitation of Variational Principle

If $\psi(x)$ and $\psi^*(x)$ are the solutions of the inhomogeneous **equations**

$$
H\,\psi(x)=S(x)\tag{1}
$$

and

$$
H^* \psi^*(x) = S^*(x) \quad , \tag{2}
$$

then it is well known that the error *E* **in the estimation of** (ψ, S^*) by the variational principle

$$
L[\phi, \phi^*] = (\phi, S^*) + (\phi^*, S - H\phi)
$$

is of second order and is given by

 $E = -(\delta \phi^*, H \delta \phi)$.

Here, $\phi(x)$ and $\phi^*(x)$ are the trial functions and $\delta\phi$ and $\delta\phi^*$ **are the departures from the exact solution given by the following equations:**

$$
\phi(x) = \psi(x) - \delta\phi
$$

$$
\phi^*(x) = \psi^*(x) - \delta\phi^* .
$$

The notation (f, g) above denotes the inner product **defined as**

$$
(f,g)=(g,f)=\int f(x)\,g(x)\,dx .
$$

Pomraning1 has pointed out that for the class of trial functions satisfying the condition

$$
(\phi^*, S - H\phi) = 0 \quad , \tag{3}
$$

the error *E* **is of first order given by**

$$
E = -(\delta \phi^*, H \delta \phi) = (\delta \phi, S^*) .
$$

This is an equality between second-order and first-order terms. This contradiction can easily be explained, if we

expand $\psi(x)$ and $\psi^*(x)$ in terms of a parameter ϵ , such that **zeroth, first, second, etc., powers of** *e* **correspond to** zeroth-, first-, second-, etc., order correction to $\psi(x)$ and $\psi^*(x)$.

$$
\psi(x) = \phi(x) + \epsilon \eta_1(\kappa) + \epsilon^2 \eta_2(\kappa) + \ldots \qquad (4)
$$

$$
\psi^*(x) = \phi^*(x) + \epsilon \eta^*(x) + \epsilon^2 \eta^*(x) + \ldots \qquad (5)
$$

Substituting the values of $\phi(x)$ and $\phi^*(x)$ from Eqs. (4) and **(5) in Eq. (3), we have**

 $(\psi^* - \epsilon \eta^* - \epsilon^2 \eta^* - \epsilon^2 \eta^* - \epsilon^* \eta^* - \epsilon^* \eta^* - \epsilon^* \eta^* - \epsilon^* \eta^* + H \epsilon \eta^* + H \epsilon^2 \eta^* + \epsilon^* \eta^*$

Using Eqs. (1) and (2) and the adjoint property of H and H^* , **we have**

$$
\epsilon(S^*, \eta_1) + \epsilon^2(S^*, \eta_2) - \epsilon^2(\eta_1^*, H\eta_2) - \epsilon^3(\eta_1^*, H\eta_2) - \epsilon^3(\eta_2^*, H\eta_1) - \ldots = 0.
$$

Equating the coefficients of various powers of e to zero, we have

$$
(S^*, \eta_1) = 0 \tag{6}
$$

$$
(S^*, \eta_2) = (\eta_1^*, H\eta_1) \quad . \tag{7}
$$

Equation (6) clearly indicates that the first-order error (S^*, η_1) in the estimation of (S^*, ψ) vanishes. Equation (7) states that $(\eta_1^*, H\eta_1)$ acts as a second-order quantity, and **this clarifies the objections raised by Pomraning.¹**

5. *R. Dwivedi*

Engg. Hall No. 1 Bhabha Atomic Research Centre Trombay, Bombay—74 (AS), India September 26, 1967

¹G. C. POMRANING, *Nucl. Sci. Eng.,* **28, 150 (1967).**