Editorial Advisory Committee

MANSON BENEDICT **DEAN BROWN** JACK CHERNICK E. RICHARD COHEN E. C. CREUTZ O. E. DWYER PAUL GAST D. H. GURINSKY A. F. HENRY D. G. HURST A. A. JOHNSON L. W. NORDHEIM RALPH T. OVERMAN RONALD S. PAUL HUGH C. PAXTON FRED W. THALGOTT A. M. WEINBERG

Publications Committee

James R. Lilienthal, Chairman E. Alfred Burrill Margaret K. Butler Rorert W. Dickinson M. A. Greenfield F. E. Jamerson William R. Kanne John L. Kuranz John H. Martens Howard D. Philipp Roy G. Post

ANS Publications Staff

JOHN GRAHAM Senior Staff Editor RUTH FARMAKES Assistant Staff Editor RICHARD HARRIS Design and Production Editor MARY M. GRIFFITH Art Editor HELEN ANDERSON Copy Editor JEAN BARR Production Assistant

Composition

BELJAN, ANN ARBOR, MICH.

Nuclear Science and Engineering is published monthly by the American Nuclear Society, Incorporated, with executive and business offices at 244 East Ogden Avenue, Hinsdale, Illinois 60521-telephone 312/325-1991. Subscription rate is \$25/volume: Volumes 27, 28, 29, and 30 will be published during 1967: Address subscription orders to the American Nuclear Society (back issues of Volumes 1-17 are available from Academic Press, 111 Fifth Avenue, New York, N.Y.). Second-class postage is paid at Hinsdale, Illinois and at additional mailing offices. Nuclear Science and Engineering is printed in Danville, Illinois. Copyright@ 1967 by the American Nuclear Society, Inc.

NUCLEAR SCIENCE and ENGINEERING

VOL. 29, No. 1 July 1967

Contents

TECHNICAL PAPERS

Integral Measurements of the Epithermal Neutron Cap-	
ture-to-Fission Cross-Section Ratios of 233 U and 235 U .	
D. E. Conway and S. B. Gunst Threshold Detector Cross-Section Intercalibration in a	1
Pure Fission Spectrum	
M. Bresesti, and R. A. Rydin	7
Thermal-Neutron Spectrum Measurements by Foil Acti-	•
vation H. Ibarra, Jr. and R. Sher	15
Scattering and Self-Shielding Corrections in Cadmium-	
Filtered Gold, Indium, and $1/v$ Foil-Activation Mea-	
surements S. Pearlstein and E. V. Weinstock	28
Invariant Imbedding and Polyenergetic Neutron Transport Theory—Part I: Theory André Mockel	43
Invariant Imbedding and Polyenergetic Neutron Transport	40
Theory-Part II: Numerical Results André Mockel	51
The Use of Noether's Theorem in Reactor Physics	• -
M. A. Tavel, B. E. Clancy, and G. C. Pomraning	58
Statistical Analysis of Estimates for the Power Spectral	
Density in Neutron Multiplying Systems.	~-
<i>E. J. McGrath and Robert W. Albrecht</i> Physics of Periodically Pulsed Reactors and Boosters:	67
Steady-State Conditions, Power Pulse Characteristics,	
and KineticsJ. A. Larrimore	87
The Effective Resonance Integral and Doppler Coefficient	
of Thorium-Oxide RodsJ. Hardy, Jr.	
and B. L. Palowitch	111
Diffusion of Xenon in Uranium Monocarbide	1 9 9
H. Shaked, D. R. Olander, and T. H. Pigford Choked-Flow Analogy for Very Low Quality Two-Phase	122
Flows Frederick G. Hammitt, M. John Robinson,	
and J. F. Lafferty	131
	131
and J. F. Lafferty TECHNICAL NOTES	131
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in	131
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in Nuclear Reactor Radiation	
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in Nuclear Reactor Radiation	131 143
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in Nuclear Reactor Radiation	
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF₄ and Carbon in Nuclear Reactor Radiation	
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF₄ and Carbon in Nuclear Reactor Radiation	143 145
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF₄ and Carbon in Nuclear Reactor Radiation	143
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in Nuclear Reactor Radiation	143 145 147
TECHNICAL NOTES Aggradation of Fluorocarbons From CF ₄ and Carbon in Nuclear Reactor Radiation	143 145
TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148
TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151 154
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151 154
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151 154
 TECHNICAL NOTES Aggradation of Fluorocarbons From CF4 and Carbon in Nuclear Reactor Radiation	143 145 147 148 149 151 154

Indexed in "Engineering Index" and Abstracted in "Nuclear Science Abstracts"